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a b s t r a c t

The D3Q19 multi relaxation time (MRT) lattice Boltzmann model is adopted to simulate the instability
phenomenon within a three-dimensional cavity at various depth–width aspect ratios ranging from 1
to 3. The computations are conducted on a single node multi graphic processing unit (GPU) system,
consisting of three nVIDIA M2070 devices using OpenMP. Results show that transition takes place
between 1750 < Recr < 1950, for cubic cavity and 1100 < Recr < 1450, for deep cavity flows with aspect
ratio 2 and 3. This indicates that an increase of the depth–width aspect ratio would induce the transition
at lower Reynolds number and is consistent with the previous results for two-dimensional cavities,
though the critical Reynolds number is approximately 75% lower for three dimensional cavity.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The lid driven cavity flow as a classical benchmark problem has
been extensively studied using both numerical approaches and
experimental techniques. Despite its geometric simplicity, the flow
exhibits a variety of flow features and provides an ideal platform to
examine the vortex dynamics. An overview of cavity flow related
works can be found in Ref. [1].

Due to the difficulty to generating two dimensional cavity flow
experimentally, most studies of two-dimensional cavity flows
were investigated by numerical simulations. Pioneering works of
Ghia et al. [2] and Schreiber and Keller [3] presented accurate
simulations for 2-D square cavity flows, and these were thereafter
considered as benchmark solutions. The square cavity flow has
been vigorously examined by different numerical schemes [4–7].
Stability in such two dimensional systems is an issue of great inter-
est and has been extensively studied. Albensoeder et al. [6] con-
ducted both numerical and experimental studies to examine the
linear stability of two-dimensional cavity flows with large span-
wise length and concluded that the instability is fully three-dimen-
sional and the stability properties are strongly dependent on the
width-depth ratio. Also, numerical results revealed that the critical
Reynolds number, where the first Hopf bifurcation takes place, is
around 8000 for square cavity flow [8–10], while Lin et al. [7,11]

further showed that this value decreases with the increase of the
depth–width ratio.

On the other hand, three-dimensional cavity flows were inves-
tigated both by experiments and numerical simulations. Iwatsu
et al. [12], Guj and Stella [13] and Mei et al. [14] adopted different
numerical schemes to simulate cubic cavity flows, where steady
solution was shown to exist at Reynolds number being Re = 2000.
Using Chebyshev-collocation technique, Albensoeder and
Kuhlmann [15] presented solutions for cavity flows at various
aspect ratio at Reynolds number up to 1000. Feldman and Gelfgat
[16] also investigated numerically the critical Reynolds number for
cubic cavity and showed that the oscillatory instability occurs at
Re � 1914. This result was later supported by a PIV measurement
[17], which concluded that the critical Reynolds number locates
in the region between 1700 < Recr < 1970.

Previous works indicated that aspect ratio has strong influence
on the fluid stability [6,11]. However, this topic has received little
attention. Therefore, the present study aims to examine the range
of critical Reynolds number as well as the relationship between
critical Reynolds number Recr and depth–width ratio. The D3Q19
MRT lattice Boltzmann model is adopted here due to its enhanced
stability at high Reynolds number flows.

As an explicit numerical scheme with intensive local computa-
tion, the LBM algorithm is very suitable for parallelization. This can
be achieved using the graphical processing unit (GPU) through the
Compute Unified Device Architecture (CUDA). Single graphic
processing unit has been successfully used for lattice Bolztmann
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computations [18,19,11], and some [20,21] further extended to
multiple GPUs platform. Due to the immense computing demand
for three dimensional MRT lattice Bolztamnn simulation, multi-
GPU computations will also be adopted. The computation platform
is a single node multi-GPU system consisting of three nVIDIA
M2070 devices with OpenMP framework and its performance rel-
ative to CPU will also be addressed.

2. Multi relaxation time lattice boltzmann model and boundary
conditions

The multi relaxation time (MRT) lattice Boltzmann method [22]
can be expressed by collision and streaming steps, respectively as:

f �i ð~x; tÞ ¼ fið~x; tÞ �M�1
il Slj½mjð~x; tÞ �meq

j ð~x; tÞ� ð1Þ
fið~xþ~eiMt; t þ MtÞ ¼ f �i ð~x; tÞ ð2Þ

where M is a matrix that transforms the distribution function f to
the velocity moment, m = Mf, and S is the relaxation matrix. These
will be defined later.

Based on the particle distribution functions, the macroscopic
density and velocity can be obtained as:

X
i

fi ¼ q;
X

i

fi~ei ¼ q~u ð3Þ

For the present 3D applications, the D3Q19 multi relaxation
time model is adopted. The transform matrix M of this model is
given as [23],

and the velocity moments are correspondingly defined as,
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ð5Þ

As suggested in [23], the adopted equilibrium moments are,
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Here, the relaxation matrix S is a diagonal matrix, i.e.,

S ¼ diag½0; s1; s2;0; s4;0; s4;0; s4; s9; s10; s9; s10; s13; s13; s13; s16; s16; s16�
ð7Þ

where the kinematic viscosity is given by

m ¼ 1
3
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and s9 = s13 are determined based on the kinematic viscosity. The
relaxation parameters for density and momentum are set equal to
zero in order to conserve mass and momentum. For the present
three dimensional cavity, it was found that convergent solution
for cubic cavity at high Reynolds number, such as Re = 7500, can
only be obtained if the non-viscosity related relaxation parameter
is 0.7. It is also found that at lower Reynolds number flow, this does
not affect the solution accuracy. Thus, in subsequent computations,
the non-viscosity related relaxation parameter is set to be 0.7.

For the present lid driven cavity shown in Fig. 1, two types of
boundary conditions are adopted. The first one is used for the

top lid boundary which moves at a constant velocity, while the sec-
ond one is applied on the stationary boundary along the remaining
five walls. Boundary conditions proposed in [24,25] are employed
to determine the unknown particle density distribution functions
along the boundary, which are expressed as a combination of the
local known value and a corrector,
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