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This paper is devoted to the solution of nonlinear time-dependant partial differential equations arising in
CFD using Broyden’s method in the parallel computing framework. We first use Broyden’s method in the
context of the domain decomposition: we propose to update the Restricted Additive Schwarz precondi-
tioner from one Newton iteration to another when a Newton-Krylov method is used. We also investigate

a time-pipelining method where Broyden’s method is used as a solver of the nonlinear problem of each

time step.
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1. Introduction

We consider the solution of differential equations of the form
Eq. (1) for a given initial condition x(0) = xo and suitable boundary
conditions.

Ax = f(x,t) (1)

In Eq. (1), f € C'(Q,R"), for Q an open set in R" x R* and A € R™",
This equation is a linear differential-algebraic equation (DAE) if
the matrix A is singular. The time discretization of Eq. (1) via back-
ward differentiation formulas leads to solving a system of nonlinear
equations F(x) =0 for F: R" — R" at each time step.

Domain decomposition methods are often used to parallelize
the solution procedure of Eq. (1): the domain decomposition can
be applied at the nonlinear level [1], is generally applied to the lin-
earized equation as in this paper. The Newton-Krylov-Schwarz
method (NKS) [2] solves the linear system of each Newton iteration
by a Krylov subspace method preconditioned by a Schwarz precon-
ditioner such as the Restricted Additive Schwarz [3]. This NKS
method and has widely be applied to CFD problems (see for exam-
ple [4-6]). When Newton-Krylov methods are used, providing pre-
conditioners for the successive linear systems is a critical point. A
balance must be found between the ability of the preconditioners
to reduce the number of Krylov iterations, and their computational
cost (setup and application to vectors). There are usually only
slight changes between two consecutive linear systems, that is
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why the same preconditioning matrix is often used for successive
Newton iterations, until it loses its efficiency. To improve its effi-
ciency and longevity, one may want to update the preconditioner
using the secant condition [7,8]. We propose to extend this idea
to the Restricted Additive Schwarz (RAS) preconditioner.

The strong scaling achieved by such spatial domain decomposi-
tion methods declines when the number of domains increases for
computational reasons (balance between computation and com-
munication) and numerical reasons (decrease of the convergence
rate when the size of the problem grows). In order to improve
the parallelism, a complementary approach is to achieve parallel-
ism across time. The main difficulty comes from the sequential
nature of the equation: the solution at the previous time steps is
required to compute the solution at the current time step. This
constraint occurs for all time integrators used in computational
fluid dynamics of unsteady problems. During the past years, at-
tempts to develop a numerical integrator that possesses time par-
allelism, such as the pipelined spectral deferred correction [9,10],
were made. These algorithms can be viewed as multiple shooting
methods (see Bellen et al. [11,12], Guibert and Tromeur-Dervout
[13] and references therein).

A short review of the Broyden’s update is given in the first sec-
tion of this paper. The aim of Section 2 is to extend the idea of a
Broyden’s update of the preconditioner to domain decomposition
preconditioners such as the Restricted Additive Schwarz precondi-
tioner. We discuss the practical issues such as the need of a re-
started algorithm, and we provide numerical experiments for the
lid-driven cavity problem. In the third section of this paper we
study the parallelization of Euler steps when the nonlinear solver
is a quasi-Newton method [14]. We particularly discuss the choice
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of the initial guess for the first iteration of each time step. We also
propose to propagate the update across the time steps. Numerical
results are given for an unsteady version of the Bratu problem,
showing that the total number of nonlinear iterations is signifi-
cantly reduced when few time steps are pipelined.

2. The Broyden’s method

This section introduces the Broyden’s method to solve the non-
linear problem F(x) = 0 arising at each time step. Throughout the
paper, the notations F, = F(x) and AFy = Fi+1 — Fi are used. Starting
from an approximation of the inverse Jacobian matrix Gy, the qua-
si-Newton update of Gy that satisfies the secant condition:

AXy = Gy 1 AFy 2)
is given by:

I)T
Giy1 = G + (Ax, — GkAFk)UT—kafor some vy (3)

Usually, v is taken as AF, or G} Ax;:
o If v = GzAXk, then Gy+; minimizes the Frobenius norm
IGly — Gyl
o If 7 = AFy, then Gy.q minimizes ||Gi+1 — Gil|r

In both cases, the proof can be derived in straightforward man-
ner from the proof of Theorem 4.1 in [14].

Algorithm 1. Broyden’s method to solve F(x)=0

Require x and Gg

1: F; = F(xq)

2: repeat

Axp= — GiFy

Xir1 = X+ AX

Fiee1 = F(Xpe1)

AFy = F+q1 — F

v" = AX[Gy or vT = AF},
Gki1 = Gy + (Axy — GyAFy)
9: until convergence

00 N oUW

o7
T AFy

Therefore, even if Gy is a sparse matrix, Gy is not. Consequently,
the matrix Gy is never formed, we only compute its application to a
vector. Typically, we start with Gy given by the LU factorization of
the Jacobian matrix J(xg), and Gy is saved as Gy = Go + Ukvl where
Uy and V; are n x k matrices where the k columns correspond to
the k rank-one updates. Then, the application of G to a vector z in-
volves one forward and backward substitutions to compute Goz,
and two matrix-vector products: Uy(V}z2). It also should be added
that a linesearch method is often used to improve the convergence
of Newton-like methods: the step 4 of Algorithm 1 is replaced by
Xi+1 = X + AAX where 4 minimizes the norm of the residual Fy..

3. Application of the update to preconditioners based upon
domain decomposition

In this part, we study the update of the Restricted Additive Sch-
warz (RAS) preconditioner using the secant condition.

3.1. Rank-one update of the RAS preconditioner

The RAS preconditioner of the linear system J(x)Ax= — F(x)
decomposed in s overlapping subdomains, is given by:

Mals = S (RY (i(x) 'R (4)

i=1
where R; is the restriction operator of the ith subdomain including
the overlap, and R; is the restriction operator except that only
interior nodes have a corresponding nonzero line. The matrix
Jitx) = RjJ(x)(R)T is the submatrix of J(x) corresponding to the ith sub-
domain including the overlap.

We propose to perform Broyden’s updates starting from the RAS
preconditioner Gy = My,. The preconditioned linear system of the
Newton iterations can be written as:

G (xk) Axy, = —GF (xi) (5)
or
Jx)GGy, Axy = —F(xy) (6)

depending on which side the preconditioner is applied.

The general Algorithm 2 gives an overview of the method with-
in a time-stepper, where the update of G, and the restarting crite-
rion are to be defined later.

Algorithm 2. Time stepper with update of the RAS preconditioner

Require: restart parameter Ky, initial guess x, k=0
1: for each time step do
2: || Newton iterations:
3: repeat
4 if k > k. then
5: Go — Z,-(/Ri)T(]"(xk))qRi /| Local LU factorizations
6: k—0
7 end if
8: solve J(x)Ax = — F(x) preconditioned by G,
9: X —Xx+AXx
10: get Gy from Gy
11: k—k+1
12: until convergence
13: end for

e For u, = AF the application of the preconditioner can be rewrit-
ten as:

k
GrX = GoX + > _uivfx = GoX + [ug -+~ ][t - - - ) X (7)
i=0
Hence, the additional cost of the application of G, compared to Gg is
roughly two matrix vector products of n x k matrices. Furthermore,
the computation of u; involves one application of G;. One should
also notice that the local LU factorizations can also be computed
asynchronously, continuing Newton iterations during the computa-
tion of the restarted preconditioner.

e For v, = GﬁAxk, the explicit computation of 7, should be avoided
because it involves G}, so Mgi; which cannot be easily com-
puted. The matrix-vector product G.qx is usually rewritten as
in Eq. (8).

GriX = (f[(l - uiAxiT)) Gox (8)

i=k

Following an idea of Martinez [15], Bergamaschi et al. proved
in [7] that for Gy and xg good enough initial guesses, the norm
Il — GiJ(xx)|| can be made arbitrarily small. Since the precondition-
er is also reused from one time step to another, it slowly loses its
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