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a b s t r a c t

We study the Darboux integrability of the celebrated Falkner–Skan equation f 000 þ ff 00 þ kð1� f 02Þ ¼ 0,
where k is a parameter. When k = 0 this equation is known as Blasius equation. We show that both dif-
ferential systems have no first integrals of Darboux type. Additionally we compute all the Darboux poly-
nomials and all the exponential factors of these differential equations.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the main results

The Falkner–Skan equation is

f 000 þ ff 00 þ kð1� f 02Þ ¼ 0; ð1Þ

where k 2 R is a parameter. This equation was first derived in [6] as
a model of the steady two-dimensional flow of a slightly viscous
incompressible fluid past a wedge. The special case k = 0, in which
the wedge reduces to a flat plate, is called Blasius equation and
was considered for a first time in [2].

Both equations are the subject of an extensive literature. For
the derivation of this equation see [1]. For the existence and
uniqueness of the solutions see, for example, [19,22,5,18,3,13]
and references therein. Recently there has been also a renewed
interest in the mathematical aspects of the Falkner–Skan equa-
tion. The dynamic features of this equation such as the existence
of oscillating and periodic orbits have been studied in [10–12,16];
and for more recent works on the bifurcations in this equation
see [14,21,20].

In MathSciNet appears in this moment 214 articles related with
the Falkner–Skan equation, but any of these papers analyze the
integrability or non-integrability of this equation. In this work
we are interested in the Darboux integrability of Blasius and Falk-
ner–Skan equation. Before we state our main result (Theorem 1)
we need to introduce some definitions and auxiliary results.

We can express (1) as a system of differential equations

_x ¼ y; _y ¼ z _z ¼ �xz� kð1� y2Þ; ð2Þ

and the associated vector field is

X ¼ y
@

@x
þ z

@

@y
þ ½�xz� kð1� y2Þ� @

@z
: ð3Þ

Let U � R3 be an open subset. We say that the non-constant
function H : U ! R is the first integral of the polynomial vector field
(3) on U associated to system (2), if H(x(t), y(t), z(t)) = constant for
all values of t for which the solution (x(t), y(t), z(t)) of X is defined
on U. Clearly H is a first integral of X on U if and only if XH ¼ 0 on
U. When H is a polynomial we say that H is a polynomial first
integral.

For proving our main results concerning the existence of first
integrals of Darboux type we shall use the invariant algebraic
surfaces of system (2). This is the basis of the Darboux theory of
integrability. The Darboux theory of integrability works for real
or complex polynomial ordinary differential equations. The study
of complex invariant algebraic curves is necessary for obtaining
all the real first integrals of a real polynomial differential equation,
for more details see [7–9,15,17].

Let h ¼ hðx; y; zÞ 2 C½x; y; z� be a non-constant polynomial. We
say that h = 0 is an invariant algebraic surface of the vector field X
in (3) if it satisfies Xh ¼ Kh, for some polynomial K ¼ Kðx; y;
zÞ 2 C½x; y; z�, called the cofactor of h. Note that K has degree at most
1. The polynomial h is called a Darboux polynomial, and we also say
that K is the cofactor of the Darboux polynomial h. We note that a
Darboux polynomial with zero cofactor is a polynomial first
integral.
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Let g;h 2 C½x; y; z� be coprime. We say that a non-constant func-
tion E = eh/g is an exponential factor of the vector field X given in (3)
if it satisfies XE ¼ LE, for some polynomial L ¼ Lðx; y; zÞ 2 C½x; y; z�,
called the cofactor of E and having degree at most 1. This relation
is equivalent to

y
@ðg=hÞ
@x

þ z
@ðg=hÞ
@y

þ ½�xz� kð1� y2Þ� @ðg=hÞ
@z

¼ K: ð4Þ

For a geometrical and algebraic meaning of the exponential factors
see [4].

A first integral G of system (2) is called of Darboux type if it is of
the form

G ¼ f k1
1 . . . f kp

p El1
1 . . . E

lq
q ;

where f1, . . . , fp are Darboux polynomials, E1, . . . , Eq are exponential
factors and kj;lk 2 C for j = 1, . . . , p, k = 1, . . . , q. For more informa-
tion on the Darboux theory of integrability see, for instance, [15,17]
and the references quoted there.

The main result of this paper is the following:

Theorem 1. For the Falkner–Skan and Blasius system the following
statements hold.

(a) Both systems have no polynomial first integrals.
(b) The unique irreducible Darboux polynomial with nonzero cofac-

tor of the Blasius system is z; the unique Darboux polynomial of
the Falkner–Skan system is 1 � y2 + 2xz if k = 1/2.

(c) The unique exponential factors of both systems are ex and ey,
except if k = � 1 then we have the additional exponential factor
ez+xy.

(d) Both systems have no first integrals of Darboux type.

Theorem 1 is proved in the next section.

2. Proof of Theorem 1

We separate the proof of Theorem 1 in four propositions, one for
every statement.

Proposition 2. System (2) has no polynomial first integrals.

Proof. Let h be a polynomial first integral of system (2). Then it
satisfies

y
@h
@x
þ z

@h
@y
þ ½�xz� kð1� y2Þ� @h

@z
¼ 0: ð5Þ

Without loss of generality we can write h ¼
Pn

j¼1hjðx; y; zÞ, where
each hj = hj(x, y, z) is a homogeneous polynomial of degree j, and
hn – 0.

Computing the terms of degree n + 1 in (5) we get

½�xzþ ky2� @hn

@z
¼ 0:

Therefore hn = hn(x, y).
Computing the terms of degree n in (5) we get that

y
@hn

@x
þ z

@hn

@y
þ ½�xzþ ky2� @hn�1

@z
¼ 0;

that is

hn�1 ¼ gn�1ðx; yÞ þ
z
x
@hn

@y
þ y

x2 logðxz� ky2Þ ky
@hn

@y
þ x

@hn

@x

� �
;

where gn�1(x, y) is a function in the variables x and y. Since hn�1 is a
polynomial, we have

ky
@hn

@y
þ x

@hn

@x
¼ 0:

Therefore hn = hn(x�k y). Since hn – 0 is a homogeneous polynomial of
degree n P 1, we have k = � p/q with p and q integers such that
p P 0,q P 1, p + q = n and hn = anxpyq, where an 2 C n f0g. Of course
in the case of the Blasius system p = 0. In short we get that hn = anxpyq.

Now we have that

hn�1ðx; y; zÞ ¼ anqxp�1yq�1zþ gn�1ðx; yÞ:

So for the Blasius system (p = 0) we have a contradiction with the
fact that hn�1(x, y, z) is a homogeneous polynomial of degree
n � 1. Thus the proposition is proved for the Blasius system. In what
follows we assume that p P 1, i.e. we restrict our attention to the
Falkner–Skan system.

Computing the terms of degree n � 1 in (5) we get that

y
@hn�1

@x
þ z

@hn�1

@y
þ ½�xzþ ky2� @hn�2

@z
¼ 0;

that is

hn�2 ¼ gn�2ðx; yÞ þ
1
2
an 2ðp� qÞy2 þ ðq� 1Þqxz
� �

xp�3yq�2zþ z
x
@gn�1

@y

þ y
qx4 log py2 þ qxz

� �
A;

where

A ¼ �anpðp� qÞxpyqþ1 þ qx3 @gn�1

@x
� px2y

@gn�1

@y
:

Since hn�2 is a homogeneous polynomial of degree n � 2 we have
that A = 0. Solving this linear partial differential equation we get
that

gn�1ðx; y; zÞ ¼ �
1

pþ 2q
anpðp� qÞxp�2yqþ1 þ G xp=qy

� �
:

Since p + q = n and gn�1 is a homogeneous polynomial of degree
n � 1 we have that

gn�1ðx; y; zÞ ¼ �
1

pþ 2q
anpðp� qÞxp�2yqþ1:

Therefore

hn�1 ¼ anqxp�1yq�1z� 1
pþ 2q

anpðp� qÞxp�2yqþ1;

hn�2 ¼ gn�2ðx; yÞ þ
1
2
an 2ðp� qÞy2 þ ðq� 1Þqxz
� �

xp�3yq�2z

� 1
pþ 2q

anpðp� qÞðqþ 1Þxp�3yqz:

Note that hn�1 is a polynomial if p P 1 and q P 1, so n P 2; and that
hn�2 is a polynomial if p P 3 and q P 2, so n P 5.

Working in a similar way with the terms of degree n � 2 in (5)
we get that

gn�2 ¼
anxp�4yq�2

2qðpþ 2qÞ2
�q2ðpþ 2qÞ2x4 þ pðp3ðq� 1Þ � 6q3
h

þ pq2ð8þ qÞ � p2qð1þ 2qÞÞy4
i

and

hn�3 ¼
1

6ðpþ 2qÞ2
6ðpþ 2qÞ2gn�3ðx; yÞ
h

þ anxp�5yq�3z 3ð2� qÞqðpþ 2qÞ2x4
�

þ 3ðp� 4Þðp� qÞð6q2 � p2 � 2pqþ p2q� pq2Þy4

þ 3ð�pþ qÞðpþ 2qÞðpþ 2q� pq� 4q2 þ pq2Þxy2z

þ ðq� 2Þðq� 1Þqðpþ 2qÞ2x2z2
	i
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