
No-slip wall acoustic boundary condition treatment
in the incompressible limit

Marianne Cuif Sjöstrand a, Yves D’Angelo a,⇑, Eric Albin b,1

a Institut National des Sciences Appliquées, Complexe de Recherche Interprofessionnel en Aérothermochimie, INSA/CORIA CNRS UMR 6614, 76801 St Etienne du Rouvray, Rouen, France
b Technische Universitat Berlin, Institut fur Strömungsmechanik und Technische Akustik, Hermann-Föttinger-Institut, Muller-Breslau-Str. 8, 10623 Berlin, Germany

a r t i c l e i n f o

Article history:
Received 12 March 2012
Received in revised form 21 December 2012
Accepted 15 July 2013
Available online 23 July 2013

Keywords:
Characteristic boundary conditions
Direct numerical simulation
No-slip wall
Incompressible limit

a b s t r a c t

A characteristic formulation for the numerical treatment of acoustically reflecting no-slip wall boundary con-
dition is presented and numerically validated for some discriminating situations. As an extension of the
3DNSCBC popular approach, this NSWIL strategy relaxes smoothly towards a 3DNSCBC strategy for a slipping
wall – the Euler equations naturalwall boundary condition – when the viscosity goes to zero. Using our in-house
6th order FD solver, some comparative tests were performed. In particular, we computed a pressure wave train
in a 2D periodic channel, leading tostanding acoustic waves. Long time runs using NSWIL strategy and involving
2.5� 105 temporal iterations and 2� 103 acoustic reflections at the walls show no numerical instability while
popular NSCBC strategy turns out to be unstable after less than 100 reflections. In that case, global mass con-
servation was very precisely ensured using NSWIL (relative loss <6� 10�5 after 2000 acoustic reflections) while
NSCBC induced a global variation above 1% before code crashed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate and stable no-slip wall boundary condition for com-
pressible flows is still an open problem for general high-order fi-
nite difference solvers. As this will be pointed out in the paper,
for the compressible high-order finite differences simulations we
performed, we observed that original characteristic-based [17]
no-slip wall boundary condition frequently leads to numerical
instabilities. Indeed, as outlined in [21], when the order of the dif-
ference equations is higher than that of the Euler equations, the
zero normal velocity boundary condition is insufficient to define
a unique solution. Some strategies were proposed in the literature
to use both high-order schemes and no-slip wall conditions when
solving fully compressible NS equations. Some of these methods
are based on the use of ‘‘ghost cells’’ [5]. Initially, they were devel-
oped by Tam and Dong [21] then extended to curvilinear cases by
Hixon [8]. The idea is to add external points to the physical do-
main. For finite difference schemes, the coefficients assigned to
the variables (velocity components, density, pressure) associated
with these points are such that the no-slip wall boundary condition
is ensured while advancing in time. More recently, Svärd and Nord-
ström [20] proposed to directly modify the discretization scheme

in order to stabilize the whole scheme. They use high-order accu-
rate finite difference summation-by-parts operators. The boundary
conditions are imposed weakly making use of penalty terms. All
these proposed stabilizing solutions rely on a local modification
of the discretization scheme.

The NSCBC strategy [17] is a popular technique to numerically
handle compressible (acoustic) boundary condition. It proposes a
way to make a distinction between incoming and outcoming
waves. Based on this distinction, a specific treatment is proposed
at the computational domain boundaries: outcoming waves are di-
rectly calculated whereas incoming waves would be modelled, that
we call the ‘‘modelling stage’’ of the strategy. Once waves varia-
tions amplitudes are estimated, they are used to rebuild the numer-
ical Navier Stokes (NS) @:

@xn
operator. Because at the boundaries a

one-sided scheme is unable to pertinently describe information
coming from the ‘‘outside’’ (e.g. as a wave reflection), to correctly
estimate the operator @./@xn – with xn the coordinate normal to
the wall – BC treatment requires a specific strategy. At the ‘‘mod-
elling stage’’, the initial NSCBC treatment assumed the flow to be
locally one-dimensional, along the normal to the boundary, and
inviscid: the so-called LODI, for Locally One-Dimensional Inviscid,
assumption. Recent studies show that taking into account the
three-dimensionality of the flow at the boundary yields far better
behaviours for inflow or outflow BC treatment [23,14,4]. The LODI
assumption is there replaced by a L3DI assumption.

These 3DNSCBC strategies have been successfully implemented
for inflows and outflows. For wall boundary conditions however, it
has been assumed that, as a consequence of the no-slip, there is no
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difference considering the LODI or L3DI assumptions [13]. It is that
point that we shall mainly discuss in the present article. For no-slip
walls, a contradiction inherently appears when making use of
3DNSCBC. More specifically, in [17], it is stated that: ‘‘The NSCBC
method is valid for the Navier–Stokes and Euler equations and relaxes
smoothly from one to the other when the viscosity goes to zero’’. If the
LODI assumption is made then the previous statement is valid but,
if we consider the L3DI assumption, this is more questionable.
Close to a no-slip wall, viscous effects may be important but should
not prevent acoustic wave reflections. In presence of viscosity, con-
sidering the multi-dimensionality (L3DI) of the flow at the wall
will lead to a different behaviour than if we consider that the flow
is locally unidimensional (LODI).

In the present paper, we propose and implement a numerically
stable2 no-slip isothermal wall boundary condition in a 6th order fi-
nite-difference solver, with hybrid staggered/colocated structured
grid [2,1], and with no modification of the discretization scheme,
to enable dealing with consistent and convenient boundary condi-
tions. Close to the boundaries, since the size of the stencil decreases,
the scheme order is successively lowered to centred 4th order and
then one-sided 3rd order [2].

The idea of the present proposed approach is as follows. Close to
a boundary, the original NSCBC formulation makes use of a LODI
assumption: transverse and diffusive terms are omitted at the
boundary. For a slipping wall, taking into account the three-dimen-
sionality of the flow seems however a better suited strategy, closer
to real flow conditions. This will include transverse terms in the BC
treatment and leads to a L3DI (for Locally Three-Dimensional Invis-
cid) assumption instead of a LODI assumption. Hence, close to the
slipping wall, the characteristic formulation of the Euler equations
(see system (12) in the sequel) should include transverse terms. On
the other hand, the asymptotic limit of these Euler equations close
to a wall is the incompressible Euler equations (see [18]). We shall
consider that the no-slip wall is the limit of the (3D) slipping wall
when the tangential velocity components go to zero – because of
the viscous effect – i.e. is a particular case of the slipping wall.

For an isothermal no-slip wall, we would like to make use of a
characteristic BC strategy, impose zero velocity and constant tem-
perature, and, at the same time, be able to satisfy this physical
incompressible wall limit of the (3D) Euler equations. For this pur-
pose, we use a 3DNSCBC approach – well–suited for aero-acoustics,
or compressible reactive flows – and modify it in order to fulfill the
incompressible limit of the Euler equations close to the isothermal
no-slip wall.

The present proposed approach will be referred to in the sequel
as 3DNSCBC-NSWIL, for Three-Dimensional Navier–Stokes Charac-
terictic Boundary Condition for No Slip Walls in the Incompressible
Limit, or NSWIL for short. Skipping the normal velocity gradient in
the NSCBC formulation this NSWIL approach proves to provide
both formal high accuracy AND practical numerical stability. As
shown by the presented numerical tests, it is able to pertinently
describe acoustic reflection at the wall and numerically ensure glo-
bal mass conservation, at least in all the numerical tests we per-
formed. The analysis in [11] compares Dirichlet and NSCBC
approaches in the case of a slipping adiabatic wall. It demonstrates
that, in this case, a much better – more stable – description is ob-
tained when using NSCBC instead of Dirichlet treatment. We will
also compare our method to the direct Dirichlet method and use
the result of Ref. [11] to explain why our method appears as more
stable in practice.

The paper is organized as follows. Section 2 presents the finite-
difference solver used for our test computations, namely the

in-house solver HAllegro, as well as the usual formulations (Dirich-
let and characteristic) for wall treatment, that will be compared to
the present proposed approach. Section 3 arises the inherent con-
tradiction of using a characteristic formulation coupled to a no-slip
condition and presents the no-slip wall treatment NSWIL. Numer-
ical validations assess the practical effectiveness of the proposed
strategy, as it is shown in Section 4. Concluding remarks end the
paper in Section 5.

2. Wall boundary conditions for NS equations

The unit vectors of the orthonormal basis used to described the
equations at the wall are denoted (n,t1,t2), with n the normal exte-
rior vector and t1 and t2 the tangential vectors to the wall, see
Fig. 1. Corresponding subscripts for vector coordinates will respec-
tively be denoted n, t1 t2, or simply t to denote any of both tangen-
tial directions.

2.1. Governing equations and FD solver

The code HAllegro is an in-house finite-difference tool that has
been developed for parallel Direct Numerical Simulation of the
fully compressible subsonic reactive Navier–Stokes equations on
structured meshes. For more details and capabilities of the code,
we refer to [1,2,4,3]. The equations solved by the code are the mul-
ti-component Navier–Stokes equations for a (possibly reactive)
compressible viscous flow. In cartesian coordinates, with Einstein
summation convention, the system of non-reactive NS equations
reads, in N space dimensions and in conservative form:

@q
@t
þ @qUj

@xj
¼ 0; ð1aÞ

@qUi

@t
þ @qUiUj

@xj
þ @P
@xi
¼ @sij

@xj
; ð1bÞ

@qE
@t
þ @ðP þ qEÞUj

@xj
¼ @qj

E

@xj
þ @sijUi

@xj
þ SE; ð1cÞ

Density is q, P denotes pressure, qUi are momentum components
(for i = 1, . . . , N). To close the system, using standard notations, it
is assumed that sij = l(@Ui/@xj + @Uj/@xi) � (2/3)l(@Uk/@xk)dij;
l = lo(T/To)0.76; qE ¼ qCV T þ qU2

i =2; qj
E ¼ k@T=@xj; k = lCp/Pr and

D = l/Sck. Pressure is computed from perfect gas law P = qr T (notice
that specific perfect gas constant r – and hence specific heats
cv ¼ r

c�1 and cp = cv + r – are assumed constant). We added the
source term SE to include a heat release term in the energy equation.
This will be used in the pressure train test-case in Section 4.4.

2.2. Finite-difference solver

The code is based on a compact 6th order finite-difference ex-
plicit scheme on hybrid structured grids. Time stepping makes

2 At least in all the numerical tests performed; note that we did not show analytical
stability, see Section 3.

Fig. 1. Sketch of vector basis used for wall BC formulation.
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