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a b s t r a c t

In engineering applications critical complex unsteady flows often are, at least in certain flow areas, only
marginally resolved. Within these areas, the truncation error of the underlying difference schemes
strongly affects the solution. Therefore, a significant gain in computational efficiency is possible if the
truncation error functions as physically consistent, i.e. reproducing the correct evolution of resolved
scales, subgrid-scale (SGS) model. The truncation error of high-order WENO-based schemes can be
exploited to function as an implicit subgrid-scale (SGS) model. A recently developed sixth-order adaptive
central-upwind weighted essentially non-oscillatory scheme with implicit scale-separation has been
demonstrated to incorporate a physically consistent implicit SGS model for compressible turbulent flows.
We consider the implicit SGS modeling capabilities of an improved version of this scheme simultaneously
for underresolved turbulent and non-turbulent incompressible flows, thus extending previous works on
this subject to a more general scope. With this model we are able to reach very long integration times for
the incompressible Taylor–Green vortex at infinite Reynolds number, and recover in particular a low-
mode transition to isotropy. Inviscid shear-layer instabilities are resolved to highly nonlinear stages,
which is shown by considering the doubly periodic two-dimensional shear layer as test configuration.
Proper resolved-scale prediction is also obtained for viscous–inviscid interactions and fully confined
viscous flows. These properties are demonstrated by applying the model to a vortex–wall interaction
problem and lid-driven cavity flow.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Truncation error asymptotic analysis (sufficiently small grid
spacing) is hardly relevant for practical applications, when the
available grid resolution in certain parts of the computational do-
main is far from resolving all physically relevant flow structures.
Thus, in most practical computations, the effect of the truncation
error is not small and it contributes to the solution as an effective
subgrid-scale model. The idea arises to adjust the local truncation
error in order to function as a physically consistent subgrid-scale
(SGS) model, i.e. delivering an accurate solution for resolved slow
structures without determinating its asymptotic behavior at the
fine-resolution limit. Modified differential equation analysis
(MDEA) [1] has enabled us to show that the truncation error of
nonlinear discretization schemes can be constructed such as to
represent an implicit SGS model for turbulent flows [2]. It is known
that the nonlinear regularization mechanism of high-order finite-
volume schemes with shock-capturing capabilities can be used
for implicit large eddy simulations (LES), for a review refer to [3].

A spectral extension of MDEA has allowed for designing the trun-
cation error of a nonlinear scheme such that it recovers the theo-
retical spectral eddy viscosity when the flow is turbulent and
underresolved. Such a situation, where the non-negligible local
truncation error of a numerical scheme recovers correct physical
SGS behavior is called in the following ‘‘physically consistent’’
behavior [4,5] in order to distinguish the analysis from that for
asymptotically small truncation errors. Successful applications for
physically consistent implicit LES models have been shown for a
wide range of compressible and incompressible turbulent flows,
e.g. [6–8]. Hu and Adams [9] have investigated the physical
consistency of the underresolved contribution of an existing low-
dissipation scheme (WENO-CU6) [10]. A proper modification of
WENO-weights has resulted in a scale separation between contri-
butions from the resolved and non-resolved scales to the locally
reconstructed solution so that non-resolved scales are subject to
dissipation, while the shock-capturing capabilities and the sixth
order of accuracy in smooth flow regions of the underlying scheme
are maintained.

Shu et al. have studied the evolution of the nearly incompress-
ible, inviscid three-dimensional Taylor–Green vortex (TGV) [11].
They have found that the fifth-order WENO scheme shows unphys-
ical dissipation effects but allows for stable underresolved
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simulations. It is well established that spectral methods are most
efficient in well-resolved cases but cannot provide SGS energy
transfer without explicit SGS models, e.g. [12,11]. In [11] it has
been demonstrated that standard finite-difference and spectral
methods do not provide the basis for physically consistent implicit
SGS modeling capability. Furthermore, it has been found that inte-
gral flow quantities, such as enstrophy and kinetic energy, do not
allow for a clear assessment of underresolved flow simulations.
On the other hand, a discretization scheme that reproduces self-
similar Kolmogorov spectra of a decaying isotropic turbulent flow
at infinite Reynolds numbers is more likely to be robust to un-
der-resolution. As WENO weighting involves measuring of flow
resolution, it offers the potential to derive a physically consistent
high-resolution scheme with a truncation error adjusted such that
it exhibits implicit subgrid-scale modeling capabilities for both,
turbulent and non-turbulent flows. We emphasize that for extre-
mely large-scale simulations on massively parallel computers the
weakly compressible flow model faces renewed significance as
an alternative to strictly incompressible approaches. This is due
to the fact that the weakly compressible flow model inherently
requires less memory communication, as all operations are local
unlike the strictly incompressible model, where the elliptic pres-
sure-projection leads to global communication needs.

The objective of the current paper is to develop and to investi-
gate physical consistency of a weakly compressible non-linear
high-resolution approach for the under-resolved simulation of tur-
bulent and non-turbulent incompressible flows. Due to the lack of
analytic accessibility of the case dependent large truncation errors
that occur in these cases, such an analysis mostly needs to rely on
empirical investigation for a range of carefully selected test flow
configurations that capture the essential properties of later target
applications. A conservative approximate Roe–Pike solver is
adapted to a weakly compressible flow model and combined with
a low-dissipation WENO scheme. A modification of the underlying
WENO scheme is proposed in order to obtain physical consistency
of the resulting implicit SGS model.

As reference flow for implicit SGS model development we con-
sider the three-dimensional Taylor–Green vortex (TGV) at infinite
Reynolds number, in particular also extending previous consider-
ations to very late times. The implicit LES capability for moderate
Reynolds number ranges is assessed by the Comte–Bellot Corrsin
decaying grid generated isotropic turbulence. The evolution of
shear layer instabilities into and throughout highly nonlinear
stages can be studied by considering the two-dimensional dou-
bly-periodic shear layer with finite thickness, further extended to
infinitely thin shear-layers at infinite Reynolds numbers. The
interaction between large scale vortical structures with the very-
small-scale structures of viscous boundary layers walls is studied
by considering an isolated vortex dipole colliding with a no-slip
wall, following Refs. [13–16]. The lid-driven cavity is discussed as
an example for a fully confined wall-bounded non-turbulent, but
with respect to proper numerical resolution highly demanding
two-dimensional flow.

2. Model formulation

2.1. Artificial compressibility approach

At Mach numbers M� 1 compressibility is negligible, i.e.
b ¼ 1

q
@q
@p � 0. The artificial compressibility approach of Chorin and

Temam [17,18] assumes a nonzero but constant compressiblity
for weakly compressible flows. The isentropic compressibility re-
lates to the sound speed by a2 ¼ 1

qbjs
. For flows with M = 0.1, as con-

sidered within this work, the isentropic compressibility is on the
order of bjs = 0.01. For isothermal processes b = bjs, and the ratio

of specific heats is c = 1. Pressure and density are directly related
by

p ¼ a2q: ð1Þ

It is evident that density fluctuations can be considered as
small, if a is a sufficiently large constant.

2.2. Numerical-flux computation adapted to weakly compressible fluid
treatment

Within the weakly compressible approach total energy is deter-
mined by the evolution of mechanical energy. Thus, the flow is
governed by equations for the conservation of mass and momen-
tum. In one dimension (for simplicity) u = (q,qu) is the solution of

@u
@t
þ @

@x
fðuÞ ¼ 0: ð2Þ

In a discrete space–time-domain, the discrete conservation
equation

dUi

dt
¼ � 1

Dxi
F u xiþ1

2
; t

� �� �
� F u xi�1

2
; t

� �� �� �
; ð3Þ

for the cell-averaged solution Ui requires approximations of the
cell-face fluxes Fi�1

2
. A straightforward low-dissipation flux approx-

imation is due to the Roe [19] approximate Riemann solver. Suc-
cessful applications of Roe schemes to the solution of weakly
compressible flows have been demonstrated by Marx [20] and
Elsworth and Toro [21].

Roe’s linearization of the local flux Jacobian ~Aj ¼ ~AðûL; ûRÞ is
essential. The eigenvalues of ~Aj are ~kjðûL; ûRÞ and its right eigenvec-
tors ~KðjÞðûL; ûRÞ are determined so that the Roe numerical flux func-
tion can be computed as

F̂iþ1
2
¼ 1

2
ðf̂ L þ f̂ RÞ �

1
2

Xm

j¼1

~ajj~kjj~KðjÞ: ð4Þ

Using the left and right reconstructed states ûL and ûR at the
interface i ¼ 1

2, the procedure to compute the eigenvalues ~kj, right
eigenvectors ~KðjÞ and wave speeds ~aj is straightforward. The Roe
averaged density ~q and velocity ~u are obtained from the left and
right states as

~q ¼ ffiffiffiffiffiffiffiffiffiffiffi
qLqR
p

;

~u ¼
ffiffiffiffiffiqL
p

uL þ
ffiffiffiffiffiffiqR
p

uRffiffiffiffiffiqL
p þ ffiffiffiffiffiffiqR

p :
ð5Þ

Within the weakly compressible approach the local Roe-aver-
aged speed of sound ~a is replaced by the constant speed of sound
a. Thus, ~kj; ~KðjÞ and ~aj are:

~k1 ¼ ~u� a; ~k2 ¼ ~uþ a; ð6Þ

~Kð1Þ ¼
1

~u� a

� �
; ~Kð2Þ ¼

1
~uþ a

� �
; ð7Þ

~a1 ¼
1

2a2 ½ðpR � pLÞ � ~qaðûR � ûLÞ�;

~a2 ¼
1

2a2 ½ðpR � pLÞ þ ~qaðûR � ûLÞ�:
ð8Þ

The resulting semi-discrete evolution equation

dUi

dt
¼ � 1

Dxi
F̂ xiþ1

2
; t

� �
� F̂ xi�1

2
; t

� �� �
; ð9Þ

can be advanced in time with a three-step TVD Runge–Kutta
scheme [22].
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