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a b s t r a c t

An intrusive stochastic projection method for two-phase time-dependent flow subject to uncertainty is
presented. Numerical experiments are carried out assuming uncertainty in the location of the physical
interface separating the two phases, but the framework generalizes to uncertainty with known distribu-
tion in other input data. Uncertainty is represented through a truncated multiwavelet expansion.

We assume that the discontinuous features of the solution are restricted to computational subdomains
and use a high-order method for the smooth regions coupled weakly through interfaces with a robust
shock capturing method for the non-smooth regions.

The discretization of the non-smooth region is based on a generalization of the HLL flux, and have many
properties in common with its deterministic counterpart. It is simple and robust, and captures the statis-
tics of the shock. The discretization of the smooth region is carried out with high-order finite-difference
operators satisfying a summation-by-parts property.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Physical models in computational fluid dynamics can be
extended with stochastic models to represent uncertainty in gov-
erning equations or input parameters, including e.g. boundary
and initial conditions, geometry and rates of reaction, diffusion
and advection. One can distinguish between non-intrusive meth-
ods, where existing deterministic numerical solvers are called with
a range of input values, and intrusive methods, resulting in a mod-
ified problem that is larger than the original deterministic problem,
but only needs to be solved once. Despite the increased complexity
of the reformulated problem, it has the potential to result in
reduced computational cost compared to that of non-intrusive
methods, such as Monte Carlo methods or stochastic numerical
integration methods.

A stochastic two-phase problem in one spatial dimension is
investigated as a first step towards developing an intrusive method
for shock–bubble interaction with generic uncertainty in the input
parameters. So et al. [1] investigated a two-dimensional two-phase
problem subject to uncertainty in bubble deformation and contam-
ination of the gas bubble, based on the experiments in [2]. The
eccentricity of the elliptic bubble and the ratio of air–helium of

the bubble were assumed to be random variables, and quantities
of interest were obtained by numerical integration in the stochas-
tic range (stochastic collocation). Previous work on uncertainty
quantification for multi-phase problems include petroleum reser-
voir simulations with stochastic point collocation methods where
deterministic flow solvers are evaluated at stochastic collocation
points [3] and Karhunen–Loève expansions combined with pertur-
bation methods [4].

We assume uncertainty in the location of the material interface,
which requires a stochastic representation of all flow variables.
Stochastic quantities are represented as generalized chaos series,
that could be either global as in the case of generalized polynomial
chaos (gPC) [5], or localized, see e.g. [6]. For robustness, we use a
generalized chaos expansion with multiwavelets to represent the
solution in the stochastic dimension [7]. It should be noted that
this basis is global, so the method is fully intrusive. However, the
basis is hierarchically localized in the sense that multiwavelets
belonging to the same resolution level are grouped into families
with non-overlapping support. These features makes it suitable
for approximating discontinuities in the stochastic space without
the emergence of spurious oscillations that occur in the case of glo-
bal polynomial bases.

The stochastic Galerkin method is applied to the stochastic two-
phase formulation, resulting in a finite-dimensional deterministic
system that shares many properties with the original deterministic
problem. The regularity properties of the stochastic problem are
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essential in the design of an appropriate numerical method. Chen
et al. studied the steady-state inviscid Burgers’ equation with a
source term [8]. We used a similar approach for the inviscid
Burgers’ equation with uncertain boundary conditions and also
analyzed the regularity of low-order stochastic Galerkin approxi-
mations of the problem [9]. Schwab and Tokareva analyzed regular-
ity of scalar hyperbolic conservation laws and a linearized version
of the Euler equations with uncertain initial profile [10]. In this pa-
per, we analyze smoothness of the stochastic two-phase system.

The stochastic Galerkin problem is hyperbolic. This generalized
and extended two-phase problem is solved with a hybrid method
coupling the continuous phase region with the discontinuous
phase region through a numerical interface. The non-smooth re-
gion is solved with the HLL-flux and MUSCL-reconstruction in
space. The minmod flux limiter is employed in the numerical
experiments displayed below.

Finite-difference operators in summation-by-parts (SBP) form
are used for the high-order spatial discretization. A symmetrized
problem formulation that generalizes the energy estimates in
[11] for the Euler equations is used for the stochastic Galerkin sys-
tem. The coupling between the different solution regions is per-
formed with a weak imposition of the interface conditions
through an interface using a penalty technique [12]. A fourth order
Runge–Kutta method is used for the integration in time.

2. Representation of uncertainty

The polynomial chaos framework for uncertainty quantification
introduced in [13] and generalized in [5] is used to represent
uncertainty in the input parameters of the governing equations.

Let x be an outcome of a probability space ðX;A;PÞ, with event
space X, r-algebraA, and probability measure P. Let n ¼ fnjðxÞgN

j¼1
be a set of N i.i.d. random variables for x 2X. Each random vari-
able nj is a mapping from the event space to R. For the cases pre-
sented here, N = 1 i.e. a single source of uncertainty is assumed
but the framework can be generalized to multiple sources of
uncertainty.

Consider a generalized chaos basis fwiðnÞg
1
i¼0 spanning the space

of second order (i.e. finite variance) random processes on this prob-
ability space. The basis functions are assumed to be orthonormal,

hwiwji ¼
Z

X
wiðnÞwjðnÞdPðnÞ ¼ dij;

where dij is the Kronecker delta. Second order random fields u(x, t, n)
can be expressed as

uðx; t; nÞ ¼
X1
i¼0

uiðx; tÞwiðnÞ: ð1Þ

Independent of the choice of orthogonal basis fwig
1
i¼0, we can ex-

press mean and variance of u(x, t, n) as

Eðuðx; t; nÞÞ ¼
Z

X
uðx; t; nÞdPðnÞ ¼ u0ðx; tÞ;

and

Varðuðx; t; nÞÞ ¼
Z

X
uðx; t; nÞ � Eðuðx; t; nÞÞð Þ2dPðnÞ ¼

X1
i¼1

u2
i ðx; tÞ;

respectively.
In the context of the stochastic Galerkin method, (1) is trun-

cated to M + 1 terms, and we set

uðx; t; nÞ �
XM

i¼0

uiðx; tÞwiðnÞ:

The truncated generalized chaos solution converges in the L2ðX;PÞ
norm to the exact solution as M ?1.

2.1. Multiwavelet expansion

Hyperbolic problems exhibit sharp gradients and shocks, for
which polynomial representations are prone to fail, see e.g.
[14,15]. For robustness, we follow the approach of [16] and use
piecewise polynomial multiwavelets (MW), defined on sub-inter-
vals of [�1, 1]. The construction of a truncated MW basis follows
the algorithm in [17].

Wavelets are defined hierarchically on different resolution lev-
els, representing successively finer features of the solution with
increasing resolution. They have non-overlapping support within
each resolution level, and in this sense they are localized. Still,
the basis is global due to the overlapping support of wavelets
belonging to different resolution levels. Piecewise constant wave-
lets, denoted Haar wavelets, do not exhibit spectral convergence,
but avoid the Gibbs phenomenon in the proximity of discontinu-
ities in the stochastic dimension.

Starting with the space VNp of polynomials of degree at most Np

defined on the interval [�1, 1], the construction of multiwavelets
aims at finding a basis of piecewise polynomials for the orthogonal
complement of VNp in the space VNpþ1 of polynomials of degree at
most Np + 1. Merging the bases of VNp and that of the orthogonal
complement of VNp in VNpþ1, we obtain a piecewise polynomial ba-
sis for VNpþ1. Continuing the process of finding orthogonal comple-
ments in spaces of increasing degree of piecewise polynomials,
leads to a basis for L2([�1, 1]).

We first introduce a smooth polynomial basis on [�1, 1]. Let
fLeiðnÞg1i¼0 be the normalized Legendre polynomials, defined recur-
sively by

Leiþ1ðnÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2iþ3

p ffiffiffiffiffiffiffiffiffiffiffiffi
2iþ1
p

iþ1
nLeiðnÞ�

i

ðiþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2i�1
p Lei�1ðnÞ

 !
; i P 1;

Le0ðnÞ¼1; Le1ðnÞ¼
ffiffiffi
3
p

n:

The set fLeiðnÞgNp

i¼0 is an orthonormal basis for VNp .
Following the algorithm by Alpert [17], we construct a set of

mother wavelets fwW
i ðnÞg

Np

i¼0 defined on the domain n 2 [�1, 1],
where

wW
i ðnÞ ¼

piðnÞ �1 6 n < 0;

ð�1ÞNpþiþ1piðnÞ 0 6 n < 1;
0 otherwise;

8><>: ð2Þ

where pi(n) is an ith order polynomial. By construction, the set of
wavelets fwW

i ðnÞg
Np

i¼0 are orthogonal to all polynomials of order at
most Np, hence the wavelets are orthogonal to the set fLeiðnÞgNp

i¼0
of Legendre polynomials of order at most Np. Based on translations
and dilations of (2), we get the wavelet family

wW
i;j;kðnÞ ¼ 2j=2wW

i ð2
jn� kÞ; i ¼ 0; . . . ;Np; j ¼ 0;1; . . . ;

k ¼ 0; . . . ;2j�1:

Let wm(n) for m = 0, . . . ,Np be the set of Legendre polynomials up
to order Np, and concatenate the indices i, j, k into m = (Np + 1)
(2j + k � 1) + i so that wmðnÞ � wW

i;j;kðnÞ for m > Np. With the MW ba-
sis fwmðnÞg

1
m¼0 we can represent any random variable u(x, t, n) with

finite variance as

uðx; t; nÞ ¼
X1
m¼0

umðx; tÞwmðnÞ;

which is of the form (1). In the computations, we truncate the MW
series both in terms of the piecewise polynomial order Np and the
resolution level Nr. With the index j = 0, . . . ,Nr, we retain M þ 1 ¼
ðNp þ 1Þ2Nr terms of the MW expansion (see Fig. 1).
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