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a b s t r a c t

There are a large number of finite volume solvers available for solution of isotropic diffusion equation.
This article presents an approach of adapting these solvers to solve anisotropic diffusion equations. The
formulation works by decomposing the diffusive flux into a component associated with isotropic diffu-
sion and another component associated with departure from isotropic diffusion. This results in an isotro-
pic diffusion equation with additional terms to account for the anisotropic effect. These additional terms
are treated using a deferred correction approach and coupled via an iterative procedure. The presented
approach is validated against various diffusion problems in anisotropic media with known analytical
or numerical solutions. Although demonstrated for two-dimensional problems, extension of the present
approach to three-dimensional problems is straight forward. Other than the finite volume method, this
approach can be applied to any discretization method.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Isotropic diffusion equation governs a very wide range of phys-
ical processes occurring in isotropic media, including heat, mass
and momentum transfers. Most media encountered in physical
and engineering applications are however anisotropic in nature.
For these media, the directional dependence of their diffusion coef-
ficients must be accounted for. This equation needs to be further
generalized by introducing the generalized Fick’s law [1,2] with
an anisotropic diffusion coefficient, and thus forming the aniso-
tropic diffusion equation with additional mixed derivative terms.
These mixed derivative terms characterize the more complicated
interactions in the physical process originated from the anisotropy
of the media under investigation. Isotropic diffusion equation is
therefore a very special limiting case of an anisotropic diffusion
equation.

Anisotropic diffusion equation arises in very diverse physical
processes. Diffusion of water vapors, organic vapors and gases in
soil, diffusion of nutrients away from fertilizer granules towards
plant roots in soil and diffusion of contaminants within subsurface
geological formations are examples of solutal diffusion transport in
porous media [3–5]. The structure of these naturally occurring por-
ous media is highly irregular in terms of the pore distribution with

respect to both size and shape. Given the anisotropy (and the het-
erogeneity) of the media, such diffusion processes can be appropri-
ately modeled with an anisotropic diffusion equation. Besides, the
generalized Darcy’s law coupled with the continuity equation for
modeling fluid flow in anisotropic heterogeneous porous media,
e.g. subsurface geological formations, gives rise to a similar aniso-
tropic diffusion equation in terms of the fluid pressure [6,7]. Heat
transfer in structural materials, e.g. wood and laminated metal
sheets, and crystals is another flourishing field where anisotropic
diffusion equation is generally applied [8–10]. Interestingly, in
the recent years, anisotropic diffusion equation finds its applica-
tion in the field of imaging, e.g. diffusion-tensor magnetic reso-
nance imaging [11] and more generally PDE-based anisotropic
diffusion filters [12–14].

From a historical point of view, solutions of isotropic diffusion
equation were attempted much earlier than that of anisotropic dif-
fusion equation. Isotropic diffusion equation has a lucidly simpler
mathematical structure and therefore is more amenable to both
analytical and numerical approaches. Some of these developed
numerical approaches, e.g. based on the finite difference (FD), finite
volume (FV), finite element (FE), boundary element (BE) methods
and fast Poisson solver [15–19], are now well established and
implemented routinely as standard solvers, at least for simple geo-
metrical configurations. For more complicated geometrical config-
urations, numerical solution implemented on unstructured mesh is
still being actively pursued for example in the recent work of [20].
Driven by the pressing needs of the above mentioned practical
applications involving anisotropic media, these methods are then

0045-7930/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2013.07.022

⇑ Corresponding author. Address: The Petroleum Institute, Depart. of Mechanical
Eng., P.O. Box 2533, Abu Dhabi, United Arab Emirates. Tel.: +971 2 607 5175; fax:
+971 2 607 5200.

E-mail address: yfatt@pi.ac.ae (Y.F. Yap).

Computers & Fluids 86 (2013) 298–309

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2013.07.022&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2013.07.022
mailto:yfatt@pi.ac.ae
http://dx.doi.org/10.1016/j.compfluid.2013.07.022
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


generalized to anisotropic diffusion equation. Such generalizations
require careful consideration of the discretization procedure that
gives proper discretization of the diffusion terms.

The applications of FD method for various anisotropic diffusion
problems were made in [7,21,22]. In [21], the coordinate system is
realigned with the principal direction of the anisotropic diffusion
coefficient so that the cross derivative terms vanish. This approach
is however difficult to be generalized for heterogeneous media
where the principal direction changes spatially. Of particular inter-
est is the improvement made by the introduction of mimetic ap-
proach [23,24]. Mimetic approach incorporates the essential
property of conservation during the discretization procedure and
gives locally conservative discretization equations. The FV method
was also extended and employed in the works of [25–27]. For FV
method, an accurate approximation of the flux at the control vol-
ume face remains one of the challenges. Flux-continuity across
the control volume faces has been given extra attention to produce
locally conservative schemes [27–29]. Matrix- [30] and flux-split-
ting [31] approaches were formulated for the FV method on struc-
tured and unstructured mesh. These approaches employ a deferred
correction approach so that the coefficient matrix and the flux vec-
tor retain similar forms as those resulted from simple diffusion
problems. The FE method was employed in [32,33] with proper
modifications in the treatment of the additional mixed derivative
terms. One notable effort that increase the method’s accuracy is
incorporation of the adaptive mesh approach into the framework
of a FE method where the underlying mesh adapts dynamically
during the solution process was developed [34]. This adaptive
mesh approach although costly gives excellent results with much
lesser numerical smearing for diffusion in highly anisotropic med-
ia. Extension and applications of the BE method in various prob-
lems involving conduction heat transfer, fluid flow in porous
media and structural problem of an elliptical bar under torsion
have been demonstrated in [35,36]. It should be mentioned that
some of these extensions require intricate discretization procedure
and therefore not straight forward to implement numerically.

Here in this article, an alternative approach that adapts the
existing solvers for isotropic diffusion equation to solve anisotropic

diffusion equation is presented. In this approach, the diffusive flux
is decomposed into a component associated with isotropic diffu-
sion and another component associated with departure from iso-
tropic diffusion. This decomposition transforms an anisotropic
diffusion equation into the form of an isotropic diffusion equation
with additional terms to account for the anisotropic effect. These
additional terms are treated using a deferred correction approach
and coupled via an iterative procedure. The advantage of the
decomposition approach proposed here is that it allows existing
solvers for isotropic problems to be extended easily to anisotropic
diffusion problems (at least for orthogonal coordinate systems).
The main contribution of this proposed approach is the simplicity
it offers in the implementation of such an extension. It just requires
an additional subroutine be written to evaluate the departure from
isotropic term and called from the original solver. No other modi-
fication on the original code of the solver is required.

It should be noted that different deferred correction approaches
have been proposed for the solution of anisotropic diffusion prob-
lems. In the flux-splitting approach at the flux level [30,31], the
flux is split into the form of a leading two-point flux and additional
cross-diffusion terms. The leading two-point flux term is approxi-
mated implicitly but the remainder flux term is treated explicitly
and coupled iteratively. With this, the standard five-point (seven-
point) stencil is preserved for two-dimensional (three-dimen-
sional) problems. For flux-splitting at the matrix level [30,31],
the coefficient matrix in the system of linear equations is effec-
tively decomposed into a penta-diagonal matrix and a residual ma-
trix. The penta-diagonal matrix is in the similar form that would be
obtained by discretizing a simple diffusion equation. In the work of
[25], only the cross diffusion terms are approximated explicitly via
a deferred correction approach and coupled iteratively. Adaptation
of these approaches into existing solvers for isotropic diffusion
problems requires more modifications on the original code for
the case where the diagonal components of the diffusion
coefficient are different.

The remaining of the article is separated into five sections. A
description of the problem is given in Section 2. Section 3 is the
core of the article where the reformulation of the anisotropic

Nomenclature

A surface area of a control volume
kEk2 root mean square norm error
kEk1 maximum norm of error
h refinement ratio
I identity matrix
k thermal conductivity
~q diffusive flux
~qD departure from isotropic component of the diffusive

flux
~qmax isotropic component of the diffusive flux
Qgen volumetric heat generation
R rotational matrix
S source term
SD source term due to departure from isotropic
T temperature
~x position vector
x coordinate axis
y coordinate axis

Greek letters
DV volume
DA surface area
e degree of anisotropic

/ transported quantity
C diffusion coefficient
Cmax isotropic component of the diffusion coefficient
CD departure from isotropic component of the diffusion

coefficient
X domain of interest
oXq boundary with prescribed flux
oX/ boundary with prescribed /
h orientation of the principal directions

Superscript
m current iteration
P prescribed value
⁄ principal directions

Subscript
ave average
B boundary control volume
n normal
P control volume P
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