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a b s t r a c t

The deformation and breakup processes of a particle-cluster aggregate under shear flows are numerically
investigated by the two-phase lattice Boltzmann method. The van der Waals attraction is considered to
be the force between particles. Simulations are performed for various fluid forces acting on particles and
various inter-particle forces. It is found that the ratio of the fluid force to the maximum inter-particle
force, Y, is a key factor in dispersion, and the aggregate of non-Brownian particles is dispersed when Y
is over 0.001. The Péclet number, which is the ratio of the diffusion rate due to shear flow to that due
to the Brownian motion, is also considered. By comparing the calculated result of the dispersion of
Brownian particles with that of non-Brownian particles, it is found that the Brownian motion impedes
dispersion and the effect of the Brownian motion is remarkable when the Péclet number is under 105.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The dispersion of micro- and nanoparticles in a liquid is
important for making new functional materials such as ceramics,
polymers, and electronic products because the characteristics of
materials can be controlled by dispersing small particles in a
solvent in their production process. However, small particles are
easy to be aggregated by an attraction force between the particles,
so it is difficult to disperse a large number of particles uniformly in
a liquid. Therefore, to develop new functional materials, it is
important to investigate particle dispersion in liquids.

The breakup mechanism of aggregated particles has been
studied both experimentally and theoretically [1–5]. Because the
dispersion dynamics of particles is very complicated, it is difficult
to investigate the breakup mechanism of aggregated particles only
through experimental and theoretical approaches, so several
numerical methods have been proposed. However, in general,
there are difficulties in treating a moving solid–liquid boundary
even in the numerical simulations of particulate flows.

Bossis and Brady [6] proposed the Stokesian dynamics, in which
a solvent fluid is not treated explicitly, but the hydrodynamic
interaction between particles is treated as a resistance of the
solvent fluid expressed by relative velocity vectors of the particles.
Harada et al. [7] investigated the dispersion of particles by the

Stokesian dynamics. However, the Stokesian dynamics remains
difficult for applications with complex boundaries. Immersed
boundary approaches, in which a moving boundary condition is
satisfied through external forces in the Navier–Stokes equation,
have been proposed [8–10]. Feng and Michaelides [11], and Mel-
chionna [12] also proposed an immersed boundary approach com-
bined with the lattice Boltzmann method to solve a fluid–particle
interaction problem. These models using the immersed boundary
method are effective approaches for moving boundary problems,
but the immersed boundary method might cause numerical errors
while evaluating the hydrodynamic force and torque acting on par-
ticles in various situations. Tanaka and Araki [13] proposed the
fluid particle dynamics method, in which a particle is treated as
a fluid with large viscosity. Although this method can eliminate
the difficulty originating from the solid-liquid boundary condition,
it is difficult to retain the spherical shape for a long time. Ladd [14]
proposed a simulation model for moving particles using the lattice
Boltzmann method in which the hydrodynamic force exerted on a
particle is calculated on the basis of momentum exchange.

Recently, the two-phase lattice Boltzmann method with the
same density [15] has been applied to the simulations of the dis-
persion of aggregated particles under shear flows by the authors
[16]. In this method, the particle is modeled by a hard droplet with
large viscosity and strong surface tension, and consequently, we do
not need to explicitly track the moving solid–liquid boundary.
Strong surface tension is applied to maintain a spherical droplet
without any other artificial treatments. Some models of the lattice

0045-7930/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2013.06.023

⇑ Corresponding author.
E-mail address: Takuya_Nishiyama@nts.toray.co.jp (T. Nishiyama).

Computers & Fluids 86 (2013) 395–404

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compfluid.2013.06.023&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2013.06.023
mailto:Takuya_Nishiyama@nts.toray.co.jp
http://dx.doi.org/10.1016/j.compfluid.2013.06.023
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


Boltzmann method that involve droplets and tunable surface ten-
sion are also available [17–20]. Here the free energy functional
scheme proposed by Swift et al. [17] is used to apply strong surface
tension. The advantage of the two-phase lattice Boltzmann method
is its simplicity in treating the solid-liquid boundary. Zaleski et al.
[21], e.g., proposed the volume-of-fluid method, which involves
droplets and tunable surface tension. However, the evaluation of
the boundary gradient is complex. In the two-phase lattice Boltz-
mann method, the boundary surface is autonomously determined
to minimize the free energy of the system. In addition, a colored
order parameter is assigned to each droplet for preventing the
droplets from merging into bigger droplets.

In this study, we improve the above-mentioned method to treat
the Brownian motion of nanoparticles and simulate a large number
of particles with a smaller number of colored order parameters.
Next, we use the improved method to investigate the behavior of
particles under shear flows for various conditions. In general,
particles diffuse by the Brownian motion in fluid, so, the Brownian
motion may promote dispersion. However, it is also known that par-
ticles, which are initially separated, aggregate by the Brownian mo-
tion (see e.g., Ref. [16]). Therefore, the effect of the Brownian motion
on the dispersion of initially aggregated particles is not yet clear. To
classify the calculated results, we introduce two important dimen-
sionless parameters: the ratio of the fluid force to the maximum in-
ter-particle force and the Péclet number, which is the ratio of the
diffusion rate due to shear flow to that due to the Brownian motion.

The paper is organized as follows: In Section 2, we explain the
numerical method. Simulation results are presented in Section 3,
in which we investigate the dispersion of the aggregations of 36
and six particles. We conclude the study in Section 4.

2. Numerical method

2.1. Two-phase lattice Boltzmann method for immiscible fluids with
the same density

Non-dimensional variables are used as in Ref. [22]. The lattice
kinetic scheme (LKS) [23], which is an extension method of the lat-
tice Boltzmann methods, is used to formulate the method. In the
LKS, macroscopic variables are calculated without particle velocity
distribution functions, and thus the scheme can save computer
memory, since there is no need to store the particle velocity distri-
bution functions. In addition, in order to represent many hard
droplets, which cannot merge into bigger droplets, we introduce
colored order parameters to make different colored droplets. Dif-
ferently colored droplets do not merge if they collide because the
boundary surface of each colored droplet is independently and
autonomously determined. Note that the color is physically mean-
ingless and is used only for distinguishing each droplet from the
others. In the present study, the Stokes flow is assumed because
the diameter of a particle is very small (e.g., 1 lm).

The 15-velocity model with particle velocities ci(i = 1,2, . . . ,15)
is used in this study. The velocity vectors of this model are given by

½c1; c2; c3; c4; c5; c6; c7; c8; c9; c10; c11; c12; c13; c14; c15�

¼
0 1 0 0 �1 0 0 1 �1 1 1 �1 1 �1 �1
0 0 1 0 0 �1 0 1 1 �1 1 �1 �1 1 �1
0 0 0 1 0 0 �1 1 1 1 �1 �1 �1 �1 1

264
375: ð1Þ

The physical space is divided into a cubic lattice, and the col-
ored order parameter /l(x, t) (l = 1,2, . . . ,N), where N is the number
of colors, the pressure p(x, t) and the velocity u(x, t) of whole fluid
at the lattice point x and at time t are computed as follows:

/lðx; t þ DtÞ ¼
X15

i¼1

f eq
li ðx� ciDx; tÞ; ð2Þ

pðx; t þ DtÞ ¼ 1
3

X15

i¼1

geq
i ðx� ciDx; tÞ; ð3Þ

uðx; t þ DtÞ ¼
X15

i¼1

cig
eq
i ðx� ciDx; tÞ: ð4Þ

where f eq
li and geq

i are equilibrium distribution functions, Dx is a
spacing of the cubic lattice, and Dt is a time step during which
the particles travel the lattice spacing.

The equilibrium distribution functions in Eqs. (2)–(4) are given
by

f eq
li ¼ Hi/l þ Fi p0ð/lÞ � jf /lr2/l �

jf

6
r/lj j2

h i
þ 3Ei/lciaua

þ Eijf Gabð/lÞciacib; ð5Þ

geq
i ¼ Ei 3pþ 3ciaua þ ADx

@ub

@xa
þ @ua

@xb

� �
ciacib

� �
þ EijgGabð/lÞciacib þ 3EiciaDx

XN

l¼1

FlaUl; ð6Þ

where

E1 ¼ 2=9; E2 ¼ E3 ¼ E4 ¼ � � � ¼ E7 ¼ 1=9;
E8 ¼ E9 ¼ E10 ¼ � � � ¼ E15 ¼ 1=72;
H1 ¼ 1; H2 ¼ H3 ¼ H4 ¼ � � � ¼ H15 ¼ 0;
F1 ¼ �7=3; Fi ¼ 3Eiði ¼ 2;3;4; . . . ;15Þ; ð7Þ

and

Gabð/Þ ¼
9
2
@/
@xa

@/
@xb
� 3

2
@/
@xc

@/
@xc

dab; ð8Þ

with a, b, c = x, y, z (subscripts a, b, and c represent Cartesian coor-
dinates, and the summation convention is used). In the above equa-
tions, dab is the Kronecker delta, jf is a constant parameter
determining the width of the interface, jg is a constant parameter
determining the strength of the surface tension, and A is a constant
parameter related to fluid viscosity. In Eq. (4), p0(/) is given by

p0ð/Þ ¼ /T/
1

1� b/
� a/2; ð9Þ

where a, b, and T/ are free parameters determining the maximum
and minimum values of the order parameter, /max and /min. It is
noted that f eq

li is the same as that for the model of Swift et al.
[17], except that f eq

li in Eq. (5) has no second terms of ua because
we assume the Stokes flow. The last term of Eq. (6) is the force Fl

acting on the lth particle per unit mass:

F l ¼
XN

m¼1

Fv lm þ FBr l; ð10Þ

where Fv lm is the attractive force per unit mass from the mth parti-
cle to the lth particle, and FBr l is the Brownian force per unit mass
acting on the lth particle. The detailed formulations of forces are gi-
ven in the following subsections. In addition, Ul in Eq. (6) represents
the region of a droplet; i.e., it is unity inside the droplet and zero
outside the droplet:

Ul ¼
1; /l P /B;

0; /l < /B:

�
ð11Þ

/B is the threshold value of the boundary and is defined as follows:

/B ¼
f/min þ /max

fþ 1
; ð12Þ

where f is a weight parameter and is described in detail in Appendix
A.

396 T. Nishiyama et al. / Computers & Fluids 86 (2013) 395–404



Download English Version:

https://daneshyari.com/en/article/7157489

Download Persian Version:

https://daneshyari.com/article/7157489

Daneshyari.com

https://daneshyari.com/en/article/7157489
https://daneshyari.com/article/7157489
https://daneshyari.com

