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a b s t r a c t

An investigation is carried out for mesh-less calculation of compressible turbulent flows. The capabilities
of the Taylor Least Square method for calculation of spatial derivatives are evaluated by using different
turbulence models. Results show that good agreement with analytical solution can be obtained when reg-
ular point distribution is used. However, numerical experiments show that using irregular point clouds
within the domain may lead to inaccurate results. So an alternative approach is developed and its accu-
racy is investigated by solving various laminar and turbulent flows at transonic flow conditions.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In spite of significant progress in theory and practice of flow
solution for complex geometries, difficulties associated with mesh
generation have remained as a major problem. A growing interest
is then observed in using alternative methods which can resolve
mesh generation difficulties. Mesh-less scheme refers to methods
that use distribution of points instead of domain discretization
by mesh.

The Finite Point Method proposed by Onate et al. [1] is formu-
lated using the approximation techniques such as, Least Square
(LSQ), Weighted Least Squares (WLS) or Moving Least Squares
(MLS) to construct the derivatives. The WLS can be used in the
forms of, Taylor Least Square (TLS) or Polynomial Least Square
(PLS). In both methods the derivatives at any point are constructed
by using points inside an influence region called neighboring
points. Thus, mesh-less method does not need a mesh in a way like
finite element or finite volume methods. PLS method involves
expanding a polynomial function from the cloud points [2–4] while
the TLS uses a Taylor series expansion instead of polynomial func-
tions [5–10]. Katz and Jameson [11] compared TLS and PLS meth-
ods and showed that TLS is more efficient for a wide variety of
flows. Sridar and Balakrishnan [10] used an upwind mesh-less
solver for simulation of subsonic and transonic laminar flows.
Hashemi and Jahangirian [8,9] used an implicit method with
central discretization of convection terms to solve laminar viscous
flows. They showed the superiority of their method compared with

the CUSP (Convective Upwind and Split Pressure) method. Some
researchers used hybrid solver including mesh-less method near
the solid wall and a finite volume flow solver far from the viscous
regions [5,6,8]. Most of these methods used an unstructured Carte-
sian mesh outside the viscous region and point cloud near the wall.
Thus, there is not any cut-cell near the surface because point
clouds are used in this region instead.

Despite the progress has been made for complex flow computa-
tions using different mesh based finite-volume and finite-element
methods, only a few mesh-less approaches have been used for
practical problems of high Reynolds number turbulent flows. Man-
icrisna and Balakrishnan [12] used an upwind mesh-less scheme
together with algebraic Baldwin–Lomax turbulence model for flow
computations. They also reported difficulties in the boundary layer
region with TLS method.

The main objective of the present study is to extend the
applicability of the mesh-less scheme presented in Ref. [9] to high
Reynolds number turbulent flows. Different turbulence models are
applied and the efficiency of the method is compared with
experimental and alternative analytical data.

2. Governing flow equations

The non-dimensional differential form of the compressible Rey-
nolds-Averaged Navier–Stokes (RANS) equations in two dimen-
sions can be expressed in the conservative form as:
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where w is the vector of conserved variables, fI and gI are the invis-
cid fluxes defined as:
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In the above notation q, u, v, P and E are the non-dimensional
density, velocity components, pressure and total energy. Viscous
flux terms fV and gV are defined as:
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The Navier–Stokes equations are completed by the perfect gas
equation of state:

P ¼ qRT; E ¼ eþ u2 þ v2

2
; e ¼ R
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T ð4Þ

2.1. Discretization of governing flow equations

The mesh-less algorithm is applied directly to the differential
form of the governing equations. Here Taylor series Least Square
method is used to discretize the equations as following:
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where D/ij = /j � /i and / could be any function.
The Navier–Stokes equations can be discretized in space as:
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The dissipative nature of the viscous terms presented in this
equation is not sufficient to damp instabilities to construct a stable
scheme. One may use the mid-point of edge ij instead of point j and
add diffusive terms D by defining the mid-point inviscid flux as [6]:
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So Eq. (6) is rewritten as:
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To discrete the transient term an explicit four-stage Runge–Kut-
ta scheme is used [8]. For computational efficiency the dissipation
term D is calculated only at the first and third stages of the Runge–
Kutta scheme. To accelerate the convergence, the local time step-
ping and implicit residual averaging are used in the present work
[8,9].

2.2. Turbulence modeling

The first turbulence model which is implemented in mesh-less
form is the algebraic Prandtl turbulence model [13]. The turbulent
viscosity lt is calculated in this model as:

lt ¼ q‘2 @u
@y
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More information about this method can be found in Ref. [13]. The
turbulence equation is discretized in the same way as done for
mean flow equations by the TLS approach. As can be seen from
the above equation there is only one derivative calculation in the
algebraic turbulence model that can be constructed as:
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In addition to algebraic turbulence model, the one-equation
Spalart–Allmaras (SA) turbulence model is discretized by mesh-
less method.
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More details and the constants which are used in this equation can
be found in Refs. [14,15]. In the SA turbulence model the discretiza-
tion of convection and diffusion terms can be done in the following
form.
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2.2.2. Diffusion term
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Other terms of this model are computed by simple algebraic
formulations. The boundary conditions for turbulence models at
the solid wall can be set to lt = 0 in algebraic and ~m ¼ 0 in SA tur-
bulence model. On the far field boundary, the turbulence variables
are extrapolated if the flow is outgoing or set to their free stream
value for incoming flow. The free stream value of eddy viscosity
is defined as lt = 0.1 l in algebraic turbulence model and ~m ¼ 3 l1

q1
that suggested by Rumsey and Spallart [15]. The initial turbulence
variables are set to free stream turbulence values.

3. Turbulent flow computation over flat plate

The investigation is carried out by solving standard turbulent
flow problem over a flat plate at Mach number 0.2 and Reynolds
number one million. Two dimensional zero pressure-gradient flat
plate case is solved on a series of regular point clouds. Three point
clouds are constructed called the coarse, medium and fine point
clouds with the size of 74 � 50, 137 � 97 and 224 � 200, respec-
tively. The spacing of the first layer of points to the solid wall is se-
lected to yield the amount of y+ levels well less than 1. For example
on medium point cloud this distance is 1 � 10�6. The point cloud
spacing in x-direction near the leading edge is about 0.002 that
grows when approaching to the end of the plate. There are 112
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