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a b s t r a c t

Building on Part I, we propose a modified method, mSPH, which retains the weak compressibility and
kernel interpolation of the basic SPH method, but suppresses the two sources of spurious high-frequency
dynamics in the presence of weak compressibility: the (stable) acoustic eigen solutions, and the unstable
depth-oscillatory modes (associated with non-uniform density). We achieve this by using a form of the
initial and boundary conditions consistent with the governing equations; and employing a robust dissi-
pative scheme, in the form of periodic smoothing. We quantify the effect and efficacy of the latter in
terms of the numerical parameters: the artificial sound speed, the kernel bandwidth, the Courant condi-
tion, and the smoothing frequency. Further, we obtain a global error metric that quantifies the spectral
amplitudes of the high-frequency dynamics and identifies the initiation and growth of temporally unsta-
ble modes. This metric is used as an independent measure for the validity of the weak compressibility
assumption, without the need for calibration with external data. We demonstrate the performance of
mSPH, and the usefulness of the error metric in four illustrative applications: the hydrostatic problem,
the collapse of a liquid column, the standard dam-break benchmark, and sloshing in a swaying tank. It
is shown that mSPH is robust and obtains convergent and accurate kinematics and dynamics compared
to theory and experiments.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Smoothed Particle Hydrodynamics (SPH) has been widely used
for incompressible, free-surface hydrodynamic problems [31] and
especially on violent flows (see e.g., [50,48,5,32,34,50,46,55,23,8])
where there are few effective alternatives. Because of the weak com-
pressibility assumption and the spatial discretization technique ker-
nel interpolation (KI), which are inherent in the basic SPH
formulation, simulation results can be affected by large high-fre-
quency oscillations (HFO) in the dynamics [12,44,11,7,19,41,46,39].

Because of these inherent issues in the method, SPH is rarely
used in its basic form without treatments. To address the HFO,
reformulations and treatments to the weak compressibility, KI,
and associated instability mechanisms have been developed with
varying degrees of success. Treatments to KI include reformulations
of the governing equations [27,22,42,25,21], and modifications to or
replacement of KI with alternative schemes [3,18,47,53,26]. The
former aim to improve conservation properties of the scheme, but
generally do not eliminate the generation of HFO near the free sur-
face. The latter could reduce the initial generation of HFO near the
free surface but may become locally singular requiring further

treatments (see e.g., [3,18]). Even though KI is the root cause of
the initial generation of HFO near the free surface (Section 4, Part
I) it remains second-order consistent even for non-uniform distri-
butions, and is not the cause or sole source of HFO in the presence
of weak compressibility (Sections 3 and 5, Part I).

To address the inherent instabilities, whether attributed primar-
ily to KI or weak incompressibility (e.g., [14,33,16,37,36,54,15];
[49]; Part I Section 5), common strategies include periodic density
re-initialization schemes via smoothing [1,47,50,5], and the addi-
tion of small, tunable term in a governing equation. The former
schemes are robust without involving computation of spatial deriv-
atives, but the effects of the re-initialization can be sensitive to the
order of the smoothing [6]. Examples of the latter approach include:
artificial viscosity [31,5] and tensile instability treatment [33] oper-
ating on the momentum equation; XSPH velocity [30] and initial
damping [31] operating on the particle positions; diffusive terms
[12,44,45,3] operating on the mass conservation; and inclusion of
energy equation [12,13]. Addition of a small term in a governing
equation may result in problem-specific efficacy. For example, the
tensile instability treatment [33] is successful in magnetohydrody-
namic applications but has shown little stability improvements in
free-surface applications [5,33] where the hydrostatic density dis-
tribution significantly alters the instability mechanisms. Recent
preferred approaches involve addition of dissipative terms in both
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the momentum and mass conservation equations [12,44,45,3].
These obtain some increase in performance, but may also have
problem-specific efficacy.

Another category of treatments involve some form of low-pass
filtering of the HFO by post-processing the dynamics in either the
spatial [19,41,11,46,39] or temporal domains [8,7]. While the for-
mer are not robust [39], the latter are effective in removing the
HFO without however, eliminating the effect of the instability on
the obtained results.

Current state-of-the-art SPH codes (such as SPHysics) include a
collection of such treatments, with options for including or exclud-
ing the treatments, to address problem-specific issues. In this con-
text, the precise mechanisms involved and the effects of the
different treatments on the simulated physics are often not well
understood or characterized, while the choice of the tunable
parameters may necessitate calibrations against external data.

We note also the development of variations of the SPH approach
which remove the fundamental assumption of weak compressibil-
ity from SPH. Notable examples include the moving-particle semi-
implicit method (MPS) [51,23,24,40,38,39], where a Poisson equa-
tion for pressure is solved to ensure incompressibility in terms of
particle densities; and the SPH projection method [52]. These are
beyond the immediate interest of the present work.

The objective of this paper is to develop rational modifications
of the SPH algorithm based on the analyses and findings in Part I.
Without revisiting the underlying assumptions of weak compress-
ibility and kernel interpolation (KI) of the original SPH method, we
focus on targeted treatments of the basic algorithm that effectively
suppress the HFO dynamics. Of particular interest is understanding
of the mechanisms introduced by the treatments in terms of the
stability and consistency issues identified in Part I. For useful appli-
cations, it is important also to obtain precise quantifications of the
effects of the treatment on the simulated physics, and ideally to
obtain accuracy metrics that allow the HFO dynamics to be mini-
mized without the need for comparison to external reference data.

Building on the analyses and results of Part I, we develop a
modified SPH (mSPH) scheme that obtains robust, accurate and
stable kinematics and dynamics for short- and long-time simula-
tions of simple and complex free-surface flows. The key modifica-
tions to the basic SPH algorithm are enforcements of the initial and
boundary conditions that are consistent with the governing equa-
tions, and periodic smoothing of the velocity and density fields.

Even though KI is the root cause of the initial generation of HFO
near the free surface, we find that initial and solid boundary condi-
tions that are inconsistent to the governing equations generate
HFO of comparable amplitudes with those at the free surface.
Moreover, HFO generated at solid boundaries are continuously
introduced throughout the duration of the simulation. Thus,
enforcing consistent initial (e.g., [20]) and boundary conditions re-
sults to an appreciable reduction in the generation of HFO. Low-or-
der periodic smoothing [50,47] is shown to introduce a small
numerical dissipation to the density in a robust manner. As in
[12,44,45,3], the efficacy is increased when the dissipation is ap-
plied to both the velocity and density fields. Based on the stability
analysis framework of Part I, we quantify and control the numeri-
cal dissipation due to smoothing in terms of the numerical param-
eters. Together these simple modifications suppress the generation
and unstable growth of HFO everywhere in the SPH domain, with a
small, robust, and quantified and controlled effect on the simulated
physics.

Based on the analyses in Part I which elucidate the frequencies
and growth rates of the HFO, we are able to define a global error
metric which quantifies the fidelity of the simulation. This metric
is a single, independent quantity from the simulations that can
be used for controlling and optimizing the numerical parameters
of mSPH without the need for calibration using known solutions.

The robustness and accuracy of mSPH as well as the use of the
global error metric are illustrated in a number of benchmark prob-
lems: solution of the hydrostatic case (compared to that using the
basic SPH method); a collapsing liquid column (quantifying the ef-
fect of dissipation on the kinematics); the dam-break problem
(obtaining accurate kinematics as well as dynamics, illustrating
the efficacy of using the global error metric); sloshing in a swaying
tank (demonstrating long-time high fidelity stable and accurate
dynamics). In all these cases, mSPH obtains stable and smooth
solutions for both the kinematics and dynamics which are in good
agreement with known results and/or experiments. In every case,
HFO are effectively eliminated based on the use of the single error
metric we define, which quantities the fidelity of the simulation
without reference to independent external data.

The structure of Part II is as follows. In Section 2 we formulate
the modified SPH scheme (mSPH) and introduce the global error
metric. Section 3 contains benchmark examples of the perfor-
mance of mSPH simulations. Conclusions are given in Section 4.

2. Rational modifications: developing the modified SPH (mSPH)
scheme

We propose a modified SPH (mSPH) scheme that retains the
simplicity allowed by the weak compressibility assumption and
meshless nature of KI. The main objective is to minimize the pres-
ence of the HFO in the simulation. We modify the typically used
initial and boundary conditions to reduce associated acoustic solu-
tions (Part I, Section 3). We smooth the velocities and densities to
dissipate all manifestations of HFO and we obtain a quantification
of the effective dissipation due to the smoothing. We introduce a
global error metric that assesses the amplitude and stability of
the HFO and determines optimal numerical parameters that suffi-
ciently suppress unstable HFO without over-dissipating desirable
solutions. The mSPH scheme significantly eliminates HFO to obtain
accurate kinematics and dynamical results that do not require cal-
ibration of the numerical parameters with external solutions.

2.1. Algorithmic modifications

2.1.1. Governing equations
In cartesian coordinates x the momentum for an incompressible

inviscid fluid with density qf, gravity g and velocity u is described
by the Euler equation:

du
dt
¼ �rP

qf
� g: ð1Þ

The weak compressibility assumption obtains the pressure P
through an equation of state (EoS), a numerical ‘particle’ density
q, and an (artificial) sound speed c. The linearized EoS is:

dP ¼ c2dq; ð2Þ

and q satisfies mass conservation:

dq
dt
¼ �qr � u: ð3Þ

Note that here the role of q is only numerical, serving as an inter-
mediate step for the computation of the pressure, similarly to a sin-
gle-iteration pseudo-compressibility method [35,10]. The
momentum in (1) is qfdu/dt. For comparison it is noted that, the
momentum in the basic SPH is qdu/dt. This difference has only
higher-order effects with respect to density fluctuations
Dr � (q � qf)/qf = O(c�2). Substituting Dr into the pressure term in
(1) and expanding about Dr = 0 obtains rP/qf =r P/q + O(c�2).
Therefore, the weakly compressible analysis and corresponding
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