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In this paper, a systematic approach to couple the lattice Boltzmann and the finite element methods is
presented for fluid-structure interaction problems. In particular, elastic structures and weakly compress-
ible viscous fluids are considered. Three partitioned coupling strategies are proposed and the accuracy
and convergence properties of the resultant algorithms are numerically investigated together with their
computational efficiency. The corotational formulation is adopted to account for structure large displace-
ments. The Time Discontinuous Galerkin method is used as time integration scheme for structure dynam-
ics. The advantages over standard Newmark time integration schemes are discussed. In the lattice
Boltzmann solver, an accurate curved boundary condition is implemented in order to properly define
the structure position. In addition, moving boundaries are treated by an effective refill procedure.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A reliable prediction of the interaction between fluids and
structures is extremely important in several industrial, technolog-
ical, biological and environmental processes. This great interest
promoted a huge research effort in the last two decades. As well
known, two different approaches, typical of any coupled problem,
can be used to tackle fluid-structure interaction (FSI): monolithic
approach and partitioned approach. Here, the partitioned approach
is adopted, since it is the most suited for practical problems, [1].
The basic strategy is to treat separately the fluid and the structural
domains and to properly discretize each of them, in order to adopt
numerical methods developed and optimized for both computa-
tional fluid dynamics and computational structural dynamics. To
meet the continuity conditions on the common fluid-structure
boundary, an effective procedure should be devised to couple the
two solvers.

In this work, weakly compressible viscous fluids are considered
and the fluid flow is modeled via the Lattice Boltzmann method
(LBM) [2]. In recent years, the LBM has proven to be a valid alter-
native to classical computational fluid dynamics based on the Na-
vier-Stokes equations, as it has proved to be extremely simple and
efficient, [2]. It is based on Boltzmann'’s kinetic equation, with its
characteristic mesoscopic point of view, and not on Navier-Stokes
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continuum assumption, and is basically a fixed grid solve. The inter-
ested readers can refer to [3-7].

Complex boundary geometries were successfully simulated by
means of the interpolation scheme described in [8,9] and recently
LBM has been also used to solve problems with moving bound-
aries. In particular, Falucci et al. [10] investigated the flow physics
induced by a rigid lamina undergoing moderately large harmonic
oscillations. More recently the authors investigated the interaction
of fluid flow with flexibly supported rigid bodies [11]. As far as
structure dynamics, the Finite Element method (FEM) is adopted.
Specifically, linear elastic slender structures idealized by beam fi-
nite elements are considered. Large displacements are accounted
for by the corotational formulation [12] and time integration is
performed by using higher order methods [13]. Among them, the
Time Discontinuous Galerkin (TDG) method, implemented accord-
ing to the two-stage algorithm recently proposed in [14], is se-
lected. This choice is motivated by its good accuracy and stability
properties, that are expected to play an important role in the per-
formance of the whole procedure.

Although a huge effort has been devoted to fluid-structure
interaction, only a few attention has been paid to coupling LBM
for fluid dynamics and FEM for structure dynamics. LBM and
FEM were successfully coupled for 2D fluid-structure interaction
in [15]. Unlike the present work, plane finite elements were used
to model the structure, together with the Newmark scheme for
time integration. An interface mesh was introduced to adapt the
two different discretizations and a staggered algorithm with sub-
iterations was employed for the fluid. More recently, Lee et al.
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[16] proposed a coupled approach to investigate the propulsion ef-
fects of a flapping flexible plate in a quiescent fluid.

The main contribution of this paper is that it offers a systematic
approach to couple LBM and FEM for fluid-structure interaction
with slender structures. Three different coupling strategies for FSI
are considered and their properties in terms of both accuracy
and stability are numerically investigated. The same time discreti-
zation is adopted for both fluid and structure. The fluid is solved on
a fixed grid (lattice) and the structure can move/deform upon the
grid, similarly to immersed boundaries [17], with no restriction
on matching between fluid and structure nodes (non-boundary-fit-
ted method). This is one of the main advantages of this approach,
since no moving meshes are needed that usually require high com-
putational times. An accurate procedure to assign the curved
boundary conditions [18] is adopted to account for the correct po-
sition of the structure. Moreover, upon structure motion, a simple
refill procedure is used to initialize new activated fluid nodes. To
compute the forces acting on the structure, the stress tensor at lat-
tice sites is computed by the simple and effective procedure dis-
cussed in [19].

The first coupling algorithm proposed in this paper, called FEL-
BA explicit, is very simple and can be classified as standard stag-
gered algorithm. The basic idea has been recently applied by the
authors in [11] to fluid-structure interaction with moving rigid
bodies and is here generalized to couple LBM and FEM. The second
coupling algorithm, called FELBA, is similar to the previous one
apart from the introduction of a structure predictor, based on the
idea proposed in [20,21] within a different framework, and from
a different way to transfer fluid forces to the structure. The third
one, called FELBA implicit, is obtained by the previous algorithm
by iterating within each time step until a convergence criterion
on interface conditions is met. It can be classified as strongly-cou-
pled partitioned algorithm. In the presence of very light structure,
Aitken’s under-relaxation is used to prevent from potential insta-
bility due to added mass effects [22-24]. Numerical tests prove
the reliability of the proposed approach and the good performance
of all the proposed coupling algorithms. An almost optimal conver-
gence rate is exhibited by the implicit version of FELBA, that is the
convergence rate of the fluid flow with rigid structure. As expected,
the structure predictor is proved to be very effective. The explicit
algorithm with structure prediction is shown to exhibit a very good
accuracy together with a nearly optimal computational cost in-
volved, that is the cost involved by the sole fluid solver. Finally,
the higher accuracy and stability provided by the TDG integration
scheme are shown by means of comparisons with classical time
integration schemes.

The paper is organized as follows. In Section 2, the problem is
stated. In Section 3, the LB method is briefly presented. In Section 4,
the TDG method and the corotational beam finite element are re-
called. In Section 5, the coupling algorithms are discussed. Section 6
presents some numerical results on two different benchmark prob-
lems. Finally, Section 7 provides some concluding remarks.

2. Problem statement

A two-dimensional fluid-structure interaction problem is con-
sidered. The fluid is assumed to be viscous and weakly compress-
ible. Fluid dynamics is modeled by a mesoscopic description
using Boltzmann'’s kinetic equation [2]. Some details are given in
Section 3.

The structure is assumed to be linearly elastic and geometrically
non-linear. Structure dynamics is modeled using the classical shear
undeformable beam theory. Some details are given in Section 4.

At the fluid-structure interface I', equilibrium and geometrical
compatibility should be satisfied. Specifically, at each point of the

interface the fluid velocity, v, should be equal to the structure
velocity, v*):

v - 99 =0 onr. (1)

In addition, the sum of tractions computed on the interface con-
sidered as fluid boundary, £, and as structure boundary, £,
should be zero:

tD4+t9 =0 onT. 2)

3. Fluid modeling

In this section, the main aspects of the single-component, sin-
gle-phase Lattice Boltzmann method for fluid dynamics modeling
are presented. It is worth to notice that the Lattice Boltzmann
method gives a mesoscopic description of fluid dynamics. The clas-
sical macroscopic continuum quantities such as fluid velocity and
density are determined by stochastic-based upscaling procedure.

3.1. The Lattice Boltzmann method

Boltzmann’s kinetic equation reads as follows:

f&x,v,t)+v(x,t)-Vf(x,v,t)=Q(x,V,t), 3)
where f=f(x,v,t) is the particle distribution function, that depends
on space x, particle velocity v and time t; the superimposed dot
indicates differentiation with respect to time. Notice that particle
velocity v differs from the macroscopic fluid velocity v. Q(x,v,t) is
the collision operator that, based on the BGK simplified model,
[25], can be defined as a relaxation towards a local equilibrium f*9:

1 el
Q=—_("-1), 4

with 7 the relaxation parameter, which is strictly related to fluid
viscosity.

Assuming a regular grid in space and time, as shown in Fig. 1,
the discretized lattice Boltzmann equation is [2]:

ﬁ@+Am¢+A0=ﬁx0+%Mﬂxﬂfﬁmny 5)

where ¢; is the jth particle velocity direction, f; = fi(x,t) and At is the
time step. In this work, two-dimensional lattice grids and a stan-
dard 9-speed scheme (see Fig. 1) are adopted, [6]. It is worth to no-
tice that Eq. (5) is explicit once f; at the end of the current time step
is expressed in terms of quantities that are known form the

<
N

Fig. 1. D2Q9 particle speed model.
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