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a b s t r a c t

This study numerically simulated the motion of a square particle free falling in a two-dimensional
vertical channel to investigate the effects of the off-center distance and the Reynolds number. The motion
regimes were classified into non-oscillatory motion, regular oscillatory motion, and irregular oscillatory
motion. The effect of the off-center distance on the particle motion became significant as the Reynolds
number increased, resulting in the bifurcation of the motion regime. There was a critical off-center
distance beyond which the critical Reynolds numbers corresponding to the limits of the regimes
depended on the off-center distance. The mean amplitude of the transverse oscillation decreased as
the ratio of the density of the particle to that of the fluid increased, and this was more significant as
the off-center distance and Reynolds number increased. Moreover, as the Reynolds number increased,
the drag coefficient decreased and eventually converged.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Sedimentation phenomena are observed in many scientific fields
such as chemical engineering [1,2], fluid mechanics [3], geology [4],
and biology. Systems of free falling particles have been used in
various studies and industrial applications. Examples are the petro-
leum industry, studies of sandstorms, river sediment resuspension
and transport, mixing processes when sediment-laden rivers enter
lakes, powder transport by pneumatic conveyance, fluidized beds
in chemical reactors, and water treatment [5,6]. The motion of free
falling particles has been studied with simplified models. Many
researchers [7–18] have presented the results of their two-
dimensional simulation of free falling circular particles. Moreover,
three-dimensional simulations of free falling spherical particles
have been conducted by several researchers [6,11,14,16,19–22].

Previous researchers have reported that the major factors
affecting the motion of a free falling particle are the off-center dis-
tance, channel width, fluid properties, density ratio, inter-particle
interaction, and particle shape. Hu et al. [7] reported the effect of
off-center distance on the flow of a circular particle. They also
observed the drafting–kissing–tumbling scenario during the sedi-
mentation process of two circular particles. Later, Hu [9] did a
quantitative analysis of the effect of the off-center distance on
the fluid flow and particle motion, focusing on the interstitial flow
phenomena and the rotation direction of a circular particle.

The effect of the channel width and off-center distance on free
falling circular particles was reported by Feng et al. [8]. In particu-
lar, they identified five regimes in the motion of a circular particle
for various Reynolds number (Re) ranges.

Several researchers [12,15,20,22,23] have investigated the
effect of the properties of the fluid on the motion of free falling
particles. They reported that the motion pattern of a particle free
falling through a non-Newtonian fluid was different from that
when falling through a Newtonian fluid. The effect of the density
ratio on the particle motion has also been investigated with a
spherical particle [23–25].

Furthermore, studies on the effect of inter-particle interaction
on particle motion have been conducted by considering two-parti-
cle interaction [7,8,11–14,17,19–22] and the sedimentation of
many particles [6,10–15,17–22].

Feng et al. [8], Wachs [18], and Sharma and Patankar [21] inves-
tigated the effect of particle shapes on free fall. Feng et al. [8] com-
pared the free falling motions of circular and elliptical particles.
Wachs [18] investigated the differences in the motions of free fall-
ing circular, square, and triangular particles. Furthermore, Sharma
and Patankar [21] numerically simulated the free falling motions of
disk and plate shaped particles.

As discernible from the foregoing, the major factors affecting the
motion of a free falling particle are well established. However, the
free falling motion of a square particle, which this study considers,
has not been widely investigated. According to our literature re-
view, only one paper by Wachs [18] considered the motion of a free
falling square particle. Moreover, although Wachs [18] investigated
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the characteristics of the motion in a channel, he only focused on
the effect of the variation in the Reynolds number for a given off-
center distance. The main purpose of the present study is to inves-
tigate the effects of the off-center distance and the Reynolds num-
ber on the motion of a square particle falling freely in a channel. The
particle motion regime map and the drag coefficient are presented
as a function of the Reynolds number and the off-center distance. In
addition, the effect of the ratio of the density of the particle to that
of the fluid on the motion is discussed.

2. Computational details

2.1. Numerical methods

Many numerical schemes such as the arbitrary Lagrangian–
Eulerian technique [7–10,19–21], the distributed-Lagrangian-
multiplier-based fictitious-domain method [11–13,15,18,22], the
immersed-boundary method [6,14,17], and the direct-forcing/ficti-
tious-domain (DF/FD) method [5,16,26] have been used to simu-
late the phenomena of free falling particles. In recent years, the
DF/FD method [5,16,26] has been successfully applied to analyze
the free falling motion of a particle and the fluid flow around the
particle. Thus, the present study adopted the DF/FD method to
investigate the motion of a free falling square particle.

The continuity and momentum conservation equations that
govern the incompressible viscous flow in the channel in the pres-
ence of the free falling particle are

r � u ¼ 0; ð1Þ
@u
@t
þ u � ru ¼ � 1

qf
rpþ mr2uþ f ; ð2Þ

where u is the fluid velocity, qf is the fluid density, m is the kine-
matic viscosity of the fluid, and f is the volume force. A second-
order accurate finite volume method was used for the spatial
discretization of the governing Eqs. (1) and (2). To simulate the time
advancement of the flow field, the fractional step method proposed
by Choi and Moin [27] was employed.

The volume force f in Eq. (2) is used to describe the effect of a
solid body on fluid flow. To calculate f in the computational
domain Xf using the DF/FD method, Eq. (2) is transformed and dis-
cretized as follows:

f ¼ @u
@t
þ u � ruþ 1

qf
rp� mr2u ¼ @u

@t
þ RHS ð3Þ

f ¼ unþ1 � un

Dt
þ RHSnþ1=2 ¼ unþ1 � ~u

Dt
þ

~u� un

Dt
þ RHSnþ1=2 ð4Þ

where RHS represents the reorganization of the convective, pres-
sure, and diffusion terms, and ~u is the preliminary velocity. In the
discretization process, the advection terms were treated explicitly
using the second-order Adams–Bashforth scheme, and the diffusion
terms were treated implicitly using the second-order accurate
Crank–Nicolson scheme. The definitions of the computational
domain Xf of a fluid flow and the fictitious domain Xp of a particle
motion using the DF/FD method are shown in Fig. 1.

The preliminary velocity ~u in Xf should satisfy the momentum
equation as follows:

~u� un

Dt
þ RHSnþ1=2 ¼ 0: ð5Þ

Therefore, by substituting Eq. (5) into Eq. (4), Eq. (4) can be simpli-
fied as

unþ1 ¼ ~uþ f Dt: ð6Þ

For the interaction between the fluid and solid domains, the un-
known volume force f in Xf is calculated from the volume force F in
the fictitious domain Xp. F is derived from the desired velocity Ud

and the preliminary velocity ~U of the forcing points over Xp (which
are distributed both inside and on the boundary of the particle) as
follows:

F ¼ Ud � ~U
Dt

; ð7Þ

Ud ¼ Uc þxc � ðX � XcÞ; ð8Þ
~U ¼

X
x2Xf

~udhðx� XÞh2
; ð9Þ

where the lowercase and uppercase letters represent the values in
Xf and Xp, respectively. Uc, xc, Xc , and h in Eqs. (8) and (9) are
the translational velocity, rotational velocity, center coordinates of
the particle, and mesh size, respectively. The preliminary velocity
~U in Xp is hooked on that in Xf as shown in Eq. (9). Thus, the effect
of the change in the fluid flow on the motion of the rigid body is
considered in the process of analyzing the rigid-body motion. dh is
the discrete Dirac delta function proposed by Roma et al. [28] and
is expressed as

dhðx� XÞ ¼ 1

h2 /
x� X

h

� �
/

y� Y
h

� �
; ð10Þ

/ðrÞ ¼

1
6 5� 3jrj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3ð1� jrjÞ2 þ 1

q� �
; 0:5 6 jrj 6 1:5;

1
3 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3jrj2 þ 1

q� �
; jrj 6 0:5;

0; otherwise:

8>>>>><
>>>>>:

ð11Þ

The equation for the rigid-body motion is governed by Newton’s
equation of motion defined by Yu and Shao [16]. Thus, the transla-
tional velocity Uc and rotational velocity xc of the particle are cal-
culated by the following equations:

Vpðqp � qf Þ
dUc

dt
¼ �qf

XNp

l¼1

FDAl þ Vpðqp � qf Þg; ð12Þ

Ip
dxc

dt
¼ �

qpqf

qp � qf

XNp

l¼1

ðX l � XcÞ � FDAl; ð13Þ

Fig. 1. Definition of computational domain Xf and fictitious domain Xp. The
computational domain is represented by the line grid and the fictitious domain by
the dots.
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