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a b s t r a c t

In this paper, we are interested in the simulation of polymer flows for high-Weissenberg numbers. The
high-Weissenberg number problem (HWNP) is one of the main difficulties encountered for the numerical
simulation of such flows. We develop a numerical approach for two non-linear models: the affine Phan-
Thien and Tanner model and the Giesekus model. We consider the 2D case and triangular and quadrilat-
eral meshes. The velocity and the pressure are approximated by non-conforming finite elements while
the stress tensor is approximated by P0 totally discontinuous finite elements. We have considered three
popular test-cases: a simple channel, a 4:1 abrupt contraction and a cylinder. Comparisons with analyt-
ical solutions and experiences are performed, illustrating the good behavior of our code. Moreover, for the
Oldroyd-B model, we have performed comparisons of drag values with data given in the literature. We
have been able to obtain simulations for large values of Weissenberg number (Wi > 21 for the 4:1 con-
traction), our approach gives a realistic description of polymer flows.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Despite numerous efforts, computational non-Newtonian fluid
mechanics is still a very challenging research area. The high-Weiss-
enberg number problem (HWNP) is one of the main difficulties
encountered for the numerical simulation of polymer flows. The
source of the problem is the breakdown in convergence of the algo-
rithms at critical values of the Weissenberg number. The frustrat-
ingly low value of the Weissenberg number limits the CFD use for
the polymer processing industry [19,36].

Besides this major issue, there are two other aspects that have
to be carefully treated by the finite element discretization: the
choice of approximation spaces satisfying the Babuška–Brezzi
compatibility condition and the treatment of the convective terms.

Several well-posed mixed finite element approximation have
been developed during the last decades. Most approaches consist
in adding ellipticity on the momentum equation in order to stabi-
lize the scheme. King et al. [21] introduce the Elasticity Elliptic
Momentum Equation (EEME) method, which is a reformulation
of the momentum equation that makes the elliptic character of this
equation explicit. Another popular method is the Elastic-Viscous

Split Stress (EVSS) finite element method introduced by Rajagopa-
lan et al. [33], which consists in splitting the stress tensor into a
viscous part and an elastic part and to perform a change of vari-
ables. The Adaptative Viscous Split Stress (AVSS) method of Sun
et al. [35], introduced another way to perform this change of vari-
able. Nevertheless, this change of variable is not possible with all
the constitutive equation. To overcome this problem, Guénette
and Fortin [16] introduced the Discrete Elastic–Viscous Split Stress
(DEVSS) finite element method, where the same split is performed,
but no change of variable is needed.

Concerning the discretization of the convective term, there exist
two main approaches: one based on the Streamline-Upwind meth-
od (SU or SUPG) and the other on discontinuous Galerkin methods
(dG) following the Lesaint–Raviart scheme. The first class of meth-
ods consists in adding streamline upwind artificial diffusivity and
was first applied to the computation of viscoelastic flows in 1987
by Marchal and Crochet [26]. The dG method is based on the Le-
saint–Raviart method [24] and was first applied to a viscoelastic li-
quid by Fortin and Fortin [13]. An advantage of this method, is that
the velocity-stress tensor spaces compatibility condition required
for the three field Stokes problem, can be easily satisfied. More-
over, the dG methods are known to be easy to implement.

For a complete review of these methods one can refers to
[1,2,28].

Recently, it has been shown that the breakdown in convergence
of the algorithms is related with the lack of positivity of the
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so-called conformation tensor at the discrete level [37,23]. The
conformation tensor can be interpreted as a tensorial measure of
the molecular orientation and stretching of the chain. This tensor
denotes the average of the dyadic product of the end-to-end vector
of a polymer chain. Grmela introduced a class of rheological mod-
els based on the conformation tensor [17]. In these models, the
conformation tensor is assumed to be symmetric and positive def-
inite. In the last few years, numerical schemes preserving the posi-
tive definiteness of the discrete conformation tensor have been
proposed in the literature based on the approach of Fattal and
Kupferman [12]. They consider a log-conformation formulation of
the constitutive equation written in terms of w = lnC and then
put Ch ¼ ewh . This method has been widely used [18,9,22]. An alter-
nate log-conformation formulation has been introduced by Coro-
nado et al. [6]. Those methods lead to stongly nonlinear
reformulations of the considered problems and therefore, their
computation is very costly. Lee and Xu employed the framework
of Riccati equations to preserve the discrete positivity [23].

Among the rheological models developed for describe the poly-
mer liquid flows, the Giesekus model is one of the most realistic
[14,15]. This model presents two main advantages. First, it yields
a realistic behavior for all flows except for the biaxial extension1

[20]. Second, only two material parameters, the relaxation time k
and the viscosity g, are needed to describe the model. These param-
eters can be easily determined using dynamic rheology experiments.
However, the Giesekus constitutive law is strongly nonlinear since it
involves a quadratic term in the stress tensor. Here, we also consider
the simplified or affine Phan-Thien–Tanner model [30,31].

In this paper, we consider a low order non-conforming finite
element method to approach the velocity and the pressure and
dG finite elements to approach the stress tensor. The presented
methodology is implemented in the academic C++ library Concha.2

To validate the code, convergence tests and comparisons with ana-
lytical solutions are performed. We have also computed the cylinder
drag values for an Oldroyd-B liquid in order to compare our numer-
ical scheme with other proposed in the literature. For the 4:1 abrupt
contraction geometry, we present velocities and stress comparisons
between experimental data [32] and our code. Finally, this geometry
allows to show simulations for high Weissenberg numbers.

The paper is structured as follows: in Section 2, we present the
rheological models used. Section 3 is devoted to the description of
the numerical schemes. In the last section, we present the numer-
ical results.

2. Governing equations

In the case of incompressible isothermal flows, the motion of a
liquid is described by:

� The mass conservation law,

r � u ¼ 0; ð1Þ

where u is the velocity of the liquid.
� The momentum conservation law,

q
@

@t
uþ u � ru

� �
�r � sþrp ¼ 0; ð2Þ

where s, p and q are respectively the extra-stress tensor, the
pressure and the density of the fluid.
� And a constitutive equation.

The rheological behaviour of a polymer liquid can be described
by two types of differential constitutive equations:

� The quasi-linear differential models:

sþ ks
�

a ¼ 2gD; ð3Þ

with s
�

a the Gordon–Schowalter convected derivative of the ex-
tra-stress tensor.
� The nonlinear differential models:

f ðsÞ þ k s
O

¼ 2gD; ð4Þ

with f(s) a nonlinear function of the extra-stress tensor.

D is the Oldroyd strain-rate tensor given by:

D ¼ 1
2
f$uþ ð$uÞtg: ð5Þ

g and k are respectively the zero-shear viscosity and the relax-
ation time of the polymer liquid.

The Gordon–Schowalter convected derivative of the tensor A is
defined by the following relationship:

A
�

a ¼
@

@t
Aþ u � $Aþ A �X�X � A� afA � Dþ D � Ag; ð6Þ

where a is a parameter 2[�1,1]. X is the vorticity tensor defined
by:

X ¼ 1
2
fð$uÞt � $ug: ð7Þ

According to the chosen values for a, we obtain:

the upper-convected derivative for a ¼ 1 : s
O

¼ @
@t sþ u � $s� s � $uþ $uð Þt � s

� �
;

the Jaumann or co-rotational derivative for a ¼ 0 : s
�
¼ @

@t sþ u � $sþ s �XþX � s;

lower-convected derivative for a ¼ �1 : s
M

¼ @
@t sþ u � $sþ s � $uð Þt þ $u � s

8>>><>>>:
ð8Þ

If we replace the time derivative by an objective time deriva-
tive, a linear model such as the Maxwell model could be trans-
formed into a quasi-linear model. The Oldroyd-B model can be
regarded as an extension of the Upper Convected Maxwell (UCM)
model. The deviatoric term of the stress is split into a polymeric
part and a solvent or Netwonian part: s = sp + ss. The constitutive
equation of this model is given by:

ss ¼ 2gsD;

sp þ ks
O

p ¼ 2gpD:

The viscosity of this liquid is defined by: g = gs + gp.
In this work, we consider two non-linear viscoelastic liquids:

the simplified version of the Phan-Thien–Tanner model [30,31]
and the Giesekus model [14,15].

According to the choice of the function f(s) in (4), we obtain:

� The simplified or affine Phan-Thien–Tanner model (PTT):

f ðsÞ ¼ 1þ �k
g

trfsg
� �

s) sþ �k
g

trfsgsþ k s
O

¼ 2gD; ð9Þ

where � is a non-dimensional adjustable parameter called the
extensional parameter.
� The Giesekus model:

f ðsÞ ¼ sþ a
G

s � s) sþ a
G

s � sþ k s
O

¼ 2gD; ð10Þ

where a is a constant 2 [0,1] and G = g/k is called the elastic
modulus.

1 For this flow, the expected behaviour is possible but is not in good agreement
with the experimental data.

2 http://sites.google.com/site/conchapau/.
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