Computers & Fluids 79 (2013) 200-212

Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier.com/locate/compfluid

Parallel defect-correction algorithms based on finite element
discretization for the Navier-Stokes equations

Yueqiang Shang *

@ CrossMark

School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, PR China

ARTICLE INFO ABSTRACT

Article history:

Received 12 July 2011

Received in revised form 3 January 2013
Accepted 26 March 2013

Available online 11 April 2013

Keywords:

Navier-Stokes equations
Finite element
Defect-correction method
Parallel computing
Parallel algorithm
Domain decomposition

Based on a fully overlapping domain decomposition technique and finite element discretization, two par-
allel defect-correction algorithms for the stationary Navier-Stokes equations with high Reynolds num-
bers are proposed and investigated. In these algorithms, each processor first solves an artificial
viscosity stabilized Navier-Stokes equations by Newton or Picard iterative method, and then diffuses
the system in the correction steps where only a linear problem needs to be solved at each step. All the
computations are performed in parallel on global composite meshes that are fine around a particular sub-
domain and coarse elsewhere. The algorithms have low communication complexity. They can yield an
approximate solution with an accuracy comparable to that of the standard finite element solution.
Numerical tests demonstrated the effectiveness of the algorithms.
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1. Introduction

Large scale computational fluid dynamics problems need large
computational resources that probably can only be provided by
parallel computers or a cluster of workstations. Therefore, with
the popularity of parallel and multicore computers, parallel com-
putations attract more and more attentions in computational fluid
dynamics community and much effort has been throwing into the
development of efficient parallel computing methods for the
Navier-Stokes equations and related flow problems (cf. [1-8]).

For high Reynolds number flows, due to the domination of the
convective term in the Navier-Stokes equations, the standard dis-
cretization schemes such as the standard finite element and finite
difference methods may cause spurious oscillations. What is
worse, the iterative method used to solve the nonlinear system
may fail to converge on a mesh that is not fine enough, and hence
cannot yield an approximate solution (cf. [9-13]). Therefore, to
simulate high Reynolds number flows, stabilization techniques
such as the subgrid-scale model methods (cf. [14-17]), the varia-
tional multiscale methods (cf. [18-21]) and the defect-correction
method (cf. [9,10]) should be adopted. Among these stabilization
methods, the defect-correction method attracted many attentions
due to its good efficiency and simplicity of implementation. It is
an iterative improvement technique for increasing the accuracy
of a computed solution without refinement of the underlying
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mesh. Tayton [9,22] first employed it to solve the Navier-Stokes
equations. It was then incoperated with the adaptive technique
[23], the two-level method [24] and the characteristic finite ele-
ment method [26]. It was also applied to the viscoelastic fluid flow
problems [25] and the conduction convection problems [27-29].
We refer to [15] and [27] for a short literature review of the de-
fect-correction method. For the Navier-Stokes equations, the de-
fect-correction method first solves the nonlinear Navier-Stokes
equations with an added artificial viscosity term on a relatively
coarse grid, and then corrects the solution on the same grid where
only a linear problem is involved at each correction step. It incor-
porates the artificial viscosity term as a stabilizing factor, making
the nonlinear system easier to solve based on existing codes. The
reader is referred to [9,10] for the details.

In this paper, a combination method of the defect-correction
approach with a parallelization technique based on fully overlap-
ping domain decomposition [30] is applied to numerically solve
the Navier-Stokes equations. This parallelization technique is, in
a way, related to the full domain partition presented by Mitchell
in [31,32] as an approach to distributing adaptive grids. Similar ap-
proaches were also proposed in literature. For example, based on
the understanding of the local and global properties of a finite ele-
ment solution to some elliptic problems, Xu and Zhou [33] pro-
posed a similar parallel approach to discretizing a class of linear
and nonlinear elliptic boundary value problems, and gave detailed
error analysis. In 2001, Bank and Jimack [34] presented a parallel
preconditioner for discretized system of elliptic partial differential
equations based on a similar approach. In [30], we discussed a
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parallel finite element discretization method based on fully over-
lapping domain decomposition technique for the stationary
incompressible Navier-Stokes equations. In this method, each pro-
cessor computes a local solution to the Navier-Stokes equations in
its own subdomain using a global composite mesh that is fine
around its own subdomain and coarse far away from the subdo-
main. Theoretical analysis and numerical tests showed that, with
a suitable ratio of coarse mesh size H to fine mesh size h, this meth-
od can yield an approximate solution with an accuracy comparable
to that of the standard finite element solution. It has low commu-
nication complexity and can be implemented easily based on an
existing sequential solver. However, due to the coarseness of the
grid far away from the interested subdomain, it is challenging for
the method to simulate high Reynolds numbers flows as the stan-
dard finite element methods encountered. To circumvent this dif-
ficulty, we combine this method with the defect-correction
method and then design two parallel defect-correction finite ele-
ment algorithms for the stationary Navier-Stokes equations which
are particularly efficient and combine the best algorithmic features
of each method. Concretely, we decompose the solution domain
into subdomains with each processor assigned one subdomain.
Each processor first independently generates a global composite
grid that is fine with size h around its own subdomain and coarse
with size H >> h far away from the subdomain, and then computes
a local solution in its own subdomain using defect-correction
method on this global composite grid. Each subproblem in these
algorithms is actually a global problem defined in the entire do-
main with the majority of the degrees of freedom associated with
the particular subdomain that it is responsible for, and hence can
be solved in parallel with other subproblems using an existing
sequential defect-correction solver without extensive recoding.

The rest of the paper is organized as follows. In the next section,
the Navier-Stokes equations and their mixed finite element
approximations are provided. In Section 3, the defect-correction
method and the fully overlapping domain decomposition tech-
nique are first briefly described. Combining the best algorithmic
features of these two methods, two parallel defect-correction algo-
rithms are then designed and investigated. Numerical tests are gi-
ven in Section 4 to demonstrate the effectiveness of the algorithms.
Finally, conclusions are drawn in Sections 5.

2. Preliminaries

Let ©2 be a bounded domain with Lipschitz-continuous bound-
ary 0Q in RY(d = 2, 3). As usual, for a nonnegative integer k, we de-
note by H¥) the Sobolev space of functions with square
integrable distribution derivatives up to order k in Q, equipped
with the standard norm | - ||, while denote by H}(Q) the closed
subspace of H'(Q) consisting of functions with zero trace on 9<;
see, e.g., [35,36].

2.1. The Navier-Stokes equations

We consider the following incompressible Navier-Stokes
equations

—VAu+ u-Viu+Vp=f, divu=0 inQ, (2.1)

where u = (uy, ..., ug)" is the velocity, p the pressure, f=(fi, ..., fa)"
the prescribed body force and v the kinematic viscosity. Given a
characteristic length L and a characteristic velocity U, the Reynolds
number is defined as Re = UL/v.

The above Egs. (2.1) need to be supplemented by some bound-
ary conditions according to the physical situations; for example,
the Dirichlet boundary condition

u=g onoQ, (2.2)

with g: Q@ — R? satisfying J20& -ndx =0 (here n denotes the unit
outward normal vector to 9€2), or the mixed boundary condition

on [y, v% —
where I'g and I'; are two subsets of 92 satisfying I'on I'1 = ¢ and
I'ouTI'1=0Q, go and g, are two given functions. For more compli-
cated boundary conditions, the reader is referred to, for example,
[37,38]. For the simplicity of presentation, we just consider no-slip
boundary condition (namely, the boundary condition (2.2) with
g =0), while other boundary conditions will be considered in the
numerical tests.

To introduce the variational formulation of (2.1) supplemented
with the no-slip boundary condition, we set

u=g, np=g, onrli, (23)

X=Hy(Q), Y=I[*Q), M:Lg(g):{qeLz(Q): qu:o},
Q

and define bilinear terms a(-, -),d(-, -) and trilinear term b(,,-) as

a(u,v) = (Vu,Vv), d(v,q)=(dive,q), Yu,veX, qeM,
b(u,v,w)=((u-V)v,w) +%((divu)v7 w)
:%((u-V)v,w)—%((wV)w,v), Yu,o,weX, qeM,

where (-,-) is the standard inner-product of [2(Q) (I=1, 2, 3).
With the above notations, the variational formulation of (2.1)
reads: find a pair (u,p) € X x M such that

va(u, v) + b(u,u, v) — d(v,p) + d(u,q) = (f,v), VY(v,q) €X x M.

(2.4)
Defining
|b(u, v, w)|
N = sup )
. oow € X Vloo Voo [VWlog
u, v,w#0

we have the following existence and uniqueness results (cf.
[39,40]).

Lemma 2.1. Given f € X' (the dual space of X), there exists at least a
solution pair (u,p) € X x M satisfying (2.4) and

- , U
IVitlog <V If 1o Ufl 0= sup L1 25)
yeX’H vHO,Q
v#0

Moreover, if v and f satisfy the following uniqueness condition

NIfI,
e o, (26)

then the solution pair (u,p) of problem (2.4) is unique.

2.2. Mixed finite element approximation

To describe the mixed finite element approximations of prob-
lem (2.4), let us assume TY(Q) = {K} to be a shape-regular triangu-
lation (see, e.g., [36,40]) of  into triangles or quadrilaterals (if
d=2), or tetrahedrons or hexahedrons (if d=3) with mesh-size
function h(x) whose value is the diameter hy of the element K con-
taining x, satisfying the following assumption:

AO. Triangulation. There exists a constant y > 1 such that

hl, < ch(x), VxeQ, 2.7)

where ho = maxyco h(x) is the largest mesh size of T"(Q).
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