
An object-oriented serial implementation of a DSMC simulation package

Hongli Liu, Chunper Cai ⇑, Chun Zou
Department of Mechanical & Aerospace Engineering, Jett Hall 505, MSC 3450, New Mexico State University, Las Cruces, New Mexico 88003, United States

a r t i c l e i n f o

Article history:
Received 30 October 2010
Received in revised form 3 December 2011
Accepted 12 December 2011
Available online 19 December 2011

Keywords:
DSMC implementation
Hybrid grid
Object-Oriented Programming
Rarefied gas flow

a b s t r a c t

This paper reports a scalar implementation of a multi-dimensional direct simulation Monte Carlo (DSMC)
package named ‘‘Generalized Rarefied gAs Simulation Package’’ (GRASP). This implementation adopts a
concept of simulation engine and it utilizes many Object-Oriented Programming features and software
engineering design patterns. As a result, this implementation successfully resolves the problem of pro-
gram functionality and interface conflictions for multi-dimensional DSMC implementations. The package
has an open architecture which benefits further development and code maintenance. To reduce engineer-
ing time for three-dimensional simulations, one effective implementation is to adopt a hybrid grid
scheme with a flexible data structure, which can automatically treat cubic cells adjacent to object sur-
faces. This package can utilize traditional structured, unstructured or hybrid grids to model multi-dimen-
sional complex geometries and simulate rarefied non-equilibrium gas flows. Benchmark test cases
indicate that this implementation has satisfactory accuracy for complex rarefied gas flow simulations.

Published by Elsevier Ltd.

1. Introduction

The national new spaceport program stimulates further interest
on hypersonic non-equilibrium flows and space weather, including
rarefied gas flows, plasma flows, and radiations. A set of compress-
ible gas and plasma simulation packages are implemented to serve
as an education and research platform for rarefied gas and plasma
flows. These packages are named ‘‘Generalized Rarefied gAs Simu-
lation Package’’ (GRASP) [1]. This paper presents an implementa-
tion of the direct simulation Monte Carlo (DSMC) [2] method, for
multi-dimensional rarefied gas flow simulations.

The DSMC method is widely adopted for rarefied gas or plasma
flow simulations. It is a stochastic simulation method in which
each simulation particle represents a large number of physical
gas molecules. The simulation particles possess physical properties
such as position, velocity and, if applicable, internal energy infor-
mation. If gas is highly rarefied, molecular movements and colli-
sions are decoupled. Molecules either move freely or interact
with boundaries. In the collision step, translational and internal
energy is re-distributed between molecules according to a chosen
collision model. At wall boundaries, molecules reflect back accord-
ing to a selected reflection model. When molecules cross inlet or
outlet boundaries, they are removed from the simulation without
any further interactions. At the same time new molecules are
introduced into the flow area from the free stream or inlet regions.
The number of molecules introduced into the gas flow area and
their velocity components depend on the boundary conditions

[2]. During the past 40 years, there have been continuing proof
and work to provide stronger supports to the validity, or even some
further development for the DSMC method. For example, Wagner
[3] provides a rigorous proof that DSMC simulations actually pro-
vide solutions to the Boltzmann equation in the limit of vanishing
discretization and statistical error. Further evidence indicates that
highly refined DSMC simulations provide results that agree with
exact solutions to the Boltzmann equation, such as the near-equi-
librium infinite-order Chapman–Enskog and the non-equilibrium
Moment Hierarchy methods [4,5]. There have been several DSMC
implementations in the literature, including those programs by
Bird’s DS2V/3 V [2], SMILE [6], MONACO [7], DAC [8], Icarus [9]
and MGDS [10].

In software engineering with large scale programming, reus-
ability and maintainability are two important requirements that
Object-Oriented Programming (OOP) [11,12] can serve well. There
are several major modules in a DSMC simulation package, i.e.,
movement, collision, particle indexing and input–output modules.
Only the movement and particle indexing modules are different for
different dimensions. As one of the most popular OOP languages,
C++ has encapsulation, inheritance, polymorphism, and other fea-
tures suitable to address the reusability and maintainability issues.
To our best knowledge, This implementation is one of a few DSMC
implementations completely utilizing C++ and some features are
worthy to be represented to the community. There are two major
issues to address in this paper, code architecture and three-dimen-
sional simulations.

One common issue for DSMC code architectures is the crowded-
ness of code interfaces and functionalities, especially when it is de-
sired to design and implement one code for multi-dimensional

0045-7930/$ - see front matter Published by Elsevier Ltd.
doi:10.1016/j.compfluid.2011.12.007

⇑ Corresponding author.
E-mail address: ccai@nmsu.edu (C. Cai).

Computers & Fluids 57 (2012) 66–75

Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid

http://dx.doi.org/10.1016/j.compfluid.2011.12.007
mailto:ccai@nmsu.edu
http://dx.doi.org/10.1016/j.compfluid.2011.12.007
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


flows, i.e., two-dimensional, axisymmetric, and three-dimensional
situations. As a common practice, programmers use the conditional
compilation, such as ‘‘#ifdef � � � #else � � � #endif’’, to achieve the
goal of one code for all dimension scenarios. This approach is prone
to create confusions and usually results in incompleteness of the
whole code structure. In software engineering, this can be classi-
fied as conflictions between subroutine functionalities and inter-
faces. To resolve this problem, OOP and several design patterns
are adopted.

On the other hand, three-dimensional DSMC simulations are
relatively challenging and time-consuming. Usually, there are
two categories of meshing treatments for three-dimensional DSMC
simulations. One adopts completely unstructured mesh which
accurately triangulates an object surface, particles move cell by cell
during each step and collide with surface accurately. However,
these schemes need to track each particle to determine whether
it passes a cell face or hits a surface. For each time step, the algo-
rithm needs to determine which side of a cell that the particle
can cross, and monitor the time left in this time step. Further,
the type of DSMC simulations depend on the mesh size, for exam-
ple, to efficiently and accurately simulate hypersonic flows around
a reentry vehicle, at different altitudes, different mesh sizes are
recreated according to different mean free paths. As a result, the
engineering and simulation cost can be expensive. The other cate-
gory is hybrid or cartesian grids, because DSMC decouples parti-
cles’ collisions and movement, after the sub-step of collisions,
particles are free to move fast, as long as the particles position
can be accurately located in a cell. As a result the computation cost
to determine the movement is significantly reduced. Further, sim-
ulations do not heavily depend on the mesh regeneration proce-
dure. However, the surface representation can suffer from
accuracy loss, when compared with triangulated surfaces in the
other category. In general, this implementation can utilize many
different grid systems to simulate multi-dimensional rarefied gas
flows. Fig. 1 shows several grid types, and unstructured mesh sys-
tems are used for two-dimensional and axisymmetric simulations,
to guarantee the program’s stability and precision. For three-
dimensional cases, this hybrid mesh divides the computational do-
main into solid cubic cells to track molecular trajectories effi-
ciently, whereas the object surface can be triangulated by any
major CAD/CAE software packages and read in by the simulator.
In general, this implementation is not only accurate with unstruc-
tured meshes, but also efficient for three-dimensional simulations.
During a three-dimensional simulation process, most of simulated
molecules are efficiently tracked and moved within a hybrid or
cartesian coordinate system, while a small portion in a small re-
gion adjacent to the object surface is treated delicately like an
unstructured grid scheme.

The structures of this paper are organized as follows: Section 2
reports the data structure, several design patterns, and OOP styles

for this implementation; Section 3 presents a special three-dimen-
sional mesh scheme; Section 4 presents other minor implementa-
tion details; Section 5 presents several benchmark test cases; and
Section 6 concludes this paper.

2. Data structure and design patterns

This section presents the code data structures and several de-
sign patterns to achieve a relatively open implementation architec-
ture for multiple dimensions and methods.

The most important data structures for a DSMC code is particle
storage. The complete particle’ information includes global posi-
tion, velocity, internal energy and a cell id. The cell id represents
in which cell a particle locates. There are two popular particle stor-
age data structures. One is from the book by Bird [2], with a large
single array to store information for all particles. Because the num-
ber of particles in flow field is difficult to determine before code
starts, the particle array size must be set sufficiently large to store
all the particles’ information. Actually, this storage scheme is pop-
ular for implementations. However, the storage space on hardware
is wasted inevitably; and within a simulation, if it is desired to
clone more particles to achieve higher precision, the whole simula-
tion process may have to restart. Another approach is to utilize
linked lists inside each cell, i.e., to divide the single large particle
table into many small linked lists for each cell. As well known, a
linked list is an efficient solution to achieve resizable array data
structure. The requested storage space can always be adjusted to
the number of particles. Some advanced implementations adopt
two linked lists for each cell, one works as a current list the other
one for backup.

The implementation adopts the first particle storage approach
[2] with some modifications. This data structure is less demanding
since changing particle’s location from one cell to another requires
only a cell ID change for the particle. As a result, the computation
efficiency can be high. Different from Bird’s original implementa-
tion, a special container class is introduced and serves as a memory
manager for the particle array. This class provides a resizable par-
ticle array with two integer flags. Whenever the actual particle
number equals to the maximum available particle slots, a larger
size memory chunk in the free store is applied, particles informa-
tion in the original smaller array is copied to the new array. When
a simulation reaches a steady state, this resizable particle array can
shrink to a sufficiently large size for particle storage. This class
guarantees that there is always enough memory available even
for a clone process.

As mentioned previously, when users plan to design and imple-
ment one code for multi-dimensional flows, it is desirable to re-
solve the conflictions between subroutine functionalities and
interfaces. More importantly, the features of the ideal DSMC code
should achieve reusability and modifiability. For DSMC simulation

Fig. 1. Examples of grid schemes adopted. left: 2D; middle: object surface; right: 3D.

H. Liu et al. / Computers & Fluids 57 (2012) 66–75 67



Download English Version:

https://daneshyari.com/en/article/7157547

Download Persian Version:

https://daneshyari.com/article/7157547

Daneshyari.com

https://daneshyari.com/en/article/7157547
https://daneshyari.com/article/7157547
https://daneshyari.com

