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a b s t r a c t

Finite-element simulations have been undertaken for the benchmark problem of extrudate swell pres-
ent in extrusion. Both cases of planar and axisymmetric domains were considered under laminar, iso-
thermal, steady-state conditions for Newtonian fluids. The effects of inertia, gravity, compressibility,
pressure-dependence of the viscosity, slip at the wall, and surface tension are all considered individ-
ually in parametric studies covering a wide range of the relevant parameters. The present results
extend previous ones regarding the shape of the extrudate and in particular the swelling ratio. In
addition, the excess pressure losses in the system (exit correction) were computed. The effect of
the domain length is also studied and is found to be of importance in all cases, except for slip and
surface tension effects. The effect of the extrudate length is particularly important for inertia and
gravity flows. Inertia reduces the swelling down to the asymptotic theoretical values at infinite Rey-
nolds numbers. Gravity acting in the direction of flow also reduces exponentially the swelling. When
the flow is creeping and gravity is zero, surface tension, slip at the wall, and pressure-dependence of
viscosity, all decrease the swelling monotonically, while compressibility increases it after a small ini-
tial reduction. The exit correction decreases monotonically with inertia, gravity, and slip, increases
monotonically with compressibility and pressure-dependence of the viscosity, and is not affected by
surface tension.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Extrudate swell (‘‘die swell’’) is a well-known phenomenon
exhibited by viscous fluids exiting long slits or capillary dies [1].
Within the context of non-Newtonian fluid mechanics, this type of
flow is of interest in polymer processing, and in particular in the flow
of polymer melts in extrusion [2]. Numerical solutions of the extru-
date-swell problem were provided in the mid-1970s by a number of
researchers [3–5], starting with the pioneering work of Tanner [3],
who for the first time calculated correctly the extrudate position.
These works dealt primarily with Newtonian fluids and showed
how the extrudate surface develops under various conditions, in
agreement with experiments [3–6]. The 1980s and 1990s saw a
major effort to calculate extrudate swell with viscoelastic models,
and these efforts are summarized in various review papers and
monographs [1,7–9].

Although the problem is well understood from the physics and
fluid mechanics points of view, it has become evident from avail-
able numerical simulations that the flow changes considerably
when using different constitutive equations or domain geometry
(planar vs. axisymmetric). Changing the constitutive equation

may lead to a flow that is dramatically different, in very interesting
and unpredictable ways [10–14]. The same is true for other param-
eters influencing the fluid mechanics of extrudate swell flow, rang-
ing from inertia [6,15,16], to gravity [17], to surface tension
[6,15,18,19], etc.

A key work by Georgiou et al. [20], which appeared as a short
note, showed both computationally and in comparison with exper-
iments that inertia, gravity and surface tension have a pronounced
effect on the extrudate shape, reducing it appreciably when gravity
acts in the flow direction. Subsequently, Georgiou and co-workers
[21–25] have addressed the influence of some standard fluid
mechanics parameters on extrudate swell, but again not in full
parametric studies. Furthermore, the discussion of pressure results,
and hence the excess pressure losses associated with exit flow,
which are an integral and important part of the solution, have been
neglected.

It is, therefore, the purpose of the present paper to revisit the
steady-state Newtonian extrudate-swell problem in both planar
and axisymmetric geometries for a full parametric study of the
effects of inertia, gravity, compressibility, a pressure-dependent
viscosity, slip at the wall, and surface tension on the free surface.
The range of parameters will be from the base case of creeping flow
without any other effects to the other extreme dictated either from
physical arguments or loss of convergence. The emphasis will be
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on providing detailed results both for the free surface location
(extrudate swell) and the excess pressure losses in the system (exit
correction) as a function of the relevant fluid mechanics dimen-
sionless parameters, as it was done recently for the benchmark
fountain flow problem in injection moulding [26].

2. Mathematical modelling

2.1. Governing equations

The geometry of the axisymmetric extrudate-swell problem is
shown schematically in Fig. 1, along with the boundary conditions.
Cylindrical coordinates are the natural choice, and the gravitational
acceleration vector, �g, is assumed to be in the direction of flow.
Moreover, the flow is assumed to be isothermal and steady-state
[1,27,28]. The flow is governed by the continuity and momentum
equations:

r � ðq�uÞ ¼ 0; ð1Þ

q�u � r�u ¼ �rpþr � ��sþ q�g; ð2Þ

where q is the density, �u is the velocity vector, p is the pressure, and
��s is the extra-stress tensor. Assuming that the fluid is dense with a
zero dilatational (bulk) viscosity [1,2], the viscous stress tensor for a
compressible Newtonian fluid is given by:

��s ¼ lðr�uþr�uTÞ � 2l
3
ðr � �uÞI; ð3Þ

where l is the viscosity and I is the unit tensor. Both the density and
the viscosity are assumed to be pressure-dependent. The following
linear equation of state is considered [29]:

q ¼ q0½1þ bðp� p0Þ�; ð4Þ

where b is the isothermal compressibility assumed to be constant,
and q0 is the density at the reference pressure p0.

Similarly, the viscosity can be a function of pressure, either lin-
ear or exponential [30,31]. In the present work, the latter form is
employed:

l ¼ l0 exp½bpðp� p0Þ�; ð5Þ

where bp is the constant pressure-shift coefficient, and l0 is the vis-
cosity at the reference pressure p0.

The constitutive equation for Newtonian fluids (Eq. (3)) is
substituted into the momentum equations (Eq. (2)), and the equa-
tion of state (Eq. (4)) into both the continuity (Eq. (1)) and momen-
tum equations. The resulting system of partial differential
equations is closed by appropriate boundary conditions.

2.2. Boundary conditions

As already mentioned, the solution domain and boundary con-
ditions for the axisymmetric geometry are shown in Fig. 1. The
boundary conditions are as follows:

(a) Along the axis of symmetry AB, we take the standard sym-
metry conditions of zero radial velocity and shear stress
(ur = 0, srz = 0).

(b) Along the wall DS we assume that the normal velocity is zero
(no penetration) and that the tangential velocity obeys a lin-
ear slip equation [21,32], i.e.,

�n � �u ¼ 0; �t � �u ¼ bslð�t�n : ��sÞ; ð6Þ

where bsl is the slip coefficient, and �n and �t are the normal and tan-
gential unit vectors to the wall. For straight walls used here, these
conditions translate to the radial velocity being zero (ur = 0) and
the axial velocity being proportional to the wall shear stress sw

(uz = bslsw). It should be noted that the no-slip case (uz = ur = 0) is
recovered as bsl goes to zero.

(c) Along the free surface SC (becoming SC0) the kinematic con-
dition �n � �u ¼ 0 ensures that the free surface is a streamline.
Moreover, the tangential stresses vanish (ð��r � �nÞ � �t ¼ 0),
while the normal stresses satisfy a force equilibrium accord-
ing to [23–25]:

ð��r � �nÞ � �n ¼ �2Rcc� p0; ð7Þ

where ��r ¼ �pI þ ��s is the total stress, c is the surface tension, p0 is
the reference pressure (set to 0), and 2Rc is the mean curvature of
the free surface given by [23–25]:

�2Rc ¼
hzz

½1þ h2
z �

3=2
� a

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

z

q : ð8Þ

In the above, the subscripts z and zz denote first- and second-or-
der differentiation of the free surface location h with respect to z,
and r is the local radius. The parameter a is an auxiliary one, being
0 for planar flows and 1 for axisymmetric flows. Thus, the second
term is 0 in planar flows. It is also clear that in the case of zero sur-
face tension, the normal stress on the free surface vanishes.

(d) Along the outflow plane BC (becoming BC0), taken suffi-
ciently far downstream from the exit so that the flow is uni-
form, the radial velocity is zero (ur = 0) and the normal stress
is given by

rzz ¼ �
ac
hf
; ð9Þ

where hf is the final radius at the outlet (distance BC0). Note that the
normal stress in the case of planar flow is zero (i.e., the surface ten-
sion has no effect on the normal stress on the outflow plane).
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Fig. 1. Schematic diagram of flow domain and boundary conditions for extrusion flow from a die and the accompanying phenomenon of extrudate swell. The constant a = 0
for the planar case and a = 1 for the axisymmetric one.
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