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A B S T R A C T

The performance of a solid oxide fuel cell (SOFC) is tightly related to relevant parameters associated with the
internal multi-physicochemical processes. Accurate identification of these parameters is considerably important
for modelling the voltage versus current (V-I) characteristic of SOFCs. In this paper, an improved teaching-
learning based algorithm (TLBO) referred to as RTLBO is proposed to identify the exact values for these para-
meters. The parameter identification of SOFCs is transformed into a minimization optimization problem. The
mean square error (MSE) between the measured output voltage and the calculated output voltage is used as the
objective function. TLBO has been shown to be competitive with other population-based algorithms. However,
its convergence rate is relatively slow especially for complex optimization problems. Inspired by the ranking
mechanism in the actual scenarios of teaching-learning process, a ranking based learner selection method is
proposed and integrated into both the teacher and learner phases of RTLBO. In RTLBO, poor learners are more
likely to be eliminated from the current class in the ranking based teacher phase and good learners are more
likely to be chosen to interact with others in the ranking based learner phase, which hence can improve the
overall performance of the class quickly. The experimental results on a 5-kW SOFC stack comprehensively de-
monstrate that RTLBO is able to achieve a better trade-off between the exploration and exploitation compared
with twelve advanced TLBO variants and eight popular advanced non-TLBO based methods. In addition, the
sensitivity of RTLBO to variations of population size is empirically investigated.

1. Introduction

A solid oxide fuel cell (SOFC) is one of the most attractive tech-
nologies for converting the chemical energy fuels to electricity through
electrochemical reactions [1–4]. SOFCs have many advantages such as
high electrical efficiency, low emission, and fuel flexibility, which make
them obtain a wide range of applications especially in the combined
generation of electric power and heat [5–15].

To further improve the performance of a SOFC, many efforts such as
utilizing various materials and developing different models have been
made. Nevertheless, no matter what the material or model type, accu-
rately measuring the various voltage losses or drops of the fuel cell is
the key and also the challenge to fully enjoy the performance im-
provement. Voltage drops of a SOFC are tightly related to relevant
parameters associated with the internal multi-physicochemical pro-
cesses and it appears that to realize further improvements in fuel cell
performance may require accurate identification of these parameters

[16,17].
Identification of relevant parameters of a SOFC model seems to be a

tough problem due to that the SOFC is a complex multivariable strongly
coupled system. In order to obtain accurate values for these parameters,
many approaches have been proposed. Among them, the utilization of
meta-heuristics has emerged as a viable and promising option due to
their robustness, simplicity, ease of implementation, and derivative-free
feature, etc. For examples, Jiang et al. [18] developed a breed particle
swarm optimization for parameter identification of a high-fidelity
control-oriented dynamic model for a steam reformer. Yang et al. [19]
proposed an improved genetic algorithm which consists of speed cycle,
fine adjustment, and renascence to optimize parameters for a tubular
SOFC stack. Jiang et al. [20] employed a cooperative coevolution
strategy to decompose the objective function of parameter identifica-
tion of SOFCs into four relative simple subfunctions first, and then
utilized a hybrid learning based barebone particle swarm optimization
to solve each subfunction. Gong et al. [21] presented an improved
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Jingqiao adaptive differential evolution algorithm, in which three
strategies, i.e., parameter adaptation, ranking-based vector selection,
and crossover rate repairing technique are combined to enhance the
algorithm performance. El-Hay et al. [22] implemented a satin bo-
werbird optimizer to both the steady-state and dynamic models of
SOFCs. Besides application in SOFCs, meta-heuristics have also gained a
significant attention in solving parameter identification problems of
other fuel cells. For instances, Ding et al. [23] applied a cuckoo search
algorithm for area-specific resistance of direct methanol fuel cells. El-
Fergany [24] utilized a salp swarm optimizer for polymer exchange
membrane fuel cells. Askarzadeh and Coelho [25] combined back-
tracking search algorithm with Burger’s chaotic map for proton ex-
change membrane fuel cells. Niu et al. [26] proposed a biogeography-
based optimization algorithm with mutation strategies for proton ex-
change membrane fuel cells.

Compared with the aforementioned meta-heuristics, teaching-
learning based optimization (TLBO) [27,28] is another simple yet
powerful meta-heuristic. It is inspired by the philosophy of classical
teaching-learning process. TLBO consists of two phases, i.e., the teacher
phase and learner phase. In TLBO, population individuals or learners
acquire their knowledge through learning from the teacher and inter-
acting with other peer learners. It is simple and parameterless except
the population size. Due to its versatility, TLBO has been successfully
applied to a variety of real-world optimization problems. However, to
the best of our knowledge, the use of TLBO for the parameter identi-
fication problem of SOFCs has not been reported so far. Both reasons
motivate us to study the feasibility and validity of TLBO in this opti-
mization problem. Although TLBO has already proven a worthy opti-
mization method compared with other popular meta-heuristics such as
GA, PSO, and DE, similar to other algorithms, it also faces up to poor
convergence [29,30]. The main reason is that the specific mechanisms
used in the basic TLBO do not accurately reflect the actual scenarios of
the classical teaching-learning process [31]. In practice, the teaching-
learning process has diverse forms and it is impossible to completely
model them in an algorithm. The only thing we can do is decreasing the
deviation between the modeling and the actual scenarios as much as
possible. In this work, inspired by the ranking mechanism in the actual
scenarios of teaching-learning process, we propose a ranking based
learner selection method and integrate it into both the teacher and
learner phases of TLBO to accelerate its convergence rate. The devel-
oped TLBO variant is referred to as RTLBO for short.

The main contributions of this work are as follows:

(1) RTLBO is proposed to effectively solve the parameter identification
problem of SOFC models. In RTLBO, a ranking based teacher phase
and a ranking based learner phase are developed. In the former
phase, those relatively poor learners are more likely to be elimi-
nated from the current class by better learners from other classes. In
the latter phase, each learner is more likely to interact with rela-
tively good learners.

(2) RTLBO is applied to a 5-kW SOFC stack. Its performance is thor-
oughly verified under different temperatures and pressures. In ad-
dition, the sensitivity of RTLBO to variations of population size is
empirically investigated.

(3) The superiority of RTLBO is comprehensively validated through
comparing with twelve advanced TLBO variants and eight popular
advanced non-TLBO based methods from multiple performance
perspectives. The experimental results demonstrate that RTLBO is
able to yield a proper equilibrium between the exploration and
exploitation.

The remainder of this paper is organized as follows. Section 2 briefly
introduces the SOFC model and the mathematical formulation of
parameter identification problem. Section 3 presents the basic TLBO.
The proposed RTLBO is elaborated in Section 4. In Section 5, experi-
mental results and comparisons are provided. Finally, Section 6 is

devoted to conclusions and future work.

2. Problem formulation

2.1. Mathematical model of SOFC

The output voltage Vcell of a SOFC can be expressed as follows
[17,32–34]:

= − − −V E V V Vcell oc act conc ohm (1)

where Eoc is the open circuit voltage, Vactis the activation voltage drop,
Vconc is the concentration voltage drop, and Vohm is the ohmic voltage
drop.

The open circuit voltage Eoc is typically assumed to be equivalent to
the Nernst reversible voltage E as follows [33,34]:
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where E0 is the standard potential, =R 8.314 kJ (kmol·K)−1 is the
universal gas constant, =F 96486 C mol−1 is the Faraday constant, T is
the operating temperature of the fuel cell in Kelvin, PH2 is the hydrogen
partial pressure, PO2 is the oxygen partial pressure, and PH O2 is the water
partial pressure.

The activation voltage drop Vact is caused by the energy barrier that
the reactants must overcome before the chemical reaction occurs. In
general, the well-known Butler-Volmer equation is used to calculate Vact
as follows [35–38]:
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where Iload is the load current density, I0,a and I0,c are the anode and
cathode exchange current densities, respectively, in mA cm−2, A is the
slope of Tafel line.

The concentration voltage drop Vconc is caused by the mass transfer
processes from the channels to the reaction sites in the porous elec-
trodes. It does not give rise to excessive voltage loss until the current
density approaches the limiting current. It can be expressed as follows
[33–36,38,39]:
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where B is a constant that depends on the fuel cell and its operating
state, and IL is the limiting current density in A cm−2.

The ohmic voltage drop Vohm is caused by the resistance to the flow
of ions in the electrolyte and resistance to flow of electrons through the
electrode materials. It obeys Ohm’s law and can be calculated as follows
[35]:

=V I Rohm load ohm (5)

where Rohm is the ionic resistance.
Substituting Eqs. (3), (4) and (5) back into Eq. (1), we can obtain
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For modeling an aggregated fuel cell stack consisting of Ncell cells,
the total output voltage Vout can be calculated as follows [40]:

=V N Vout cell cell (7)

It can be seen from Eqs. (6) and (7) that, in this model, the unknown
parameters are Eoc, A, I0,a, I0,c, B, IL and Rohm. The major difficulty is the
lack of information about the precise value of these parameters under
different operating conditions.
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