

Contents lists available at ScienceDirect

Energy Conversion and Management

Recovery of cold energy from liquefied natural gas regasification: Applications beyond power cycles

J.O. Khor^a, F. Dal Magro^b, T. Gundersen^c, J.Y. Sze^a, A. Romagnoli^{d,*}

^a Energy Research Institute @ Nanyang Technological University, Singapore

^b Department of Mechanical Engineering, Universita' di Udine, Italy

^c Department of Energy and Process Engineering, NTNU, Norway

^d School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

ARTICLE INFO

Keywords: Liquefied natural gas Cold to cold applications Exergy analysis Liquid air energy storage Liquefied natural gas cold energy District cooling

ABSTRACT

Liquefied natural gas releases large amounts of cold energy during the conventional regasification process. Currently, most studies have investigated the opportunities to utilize this waste cold for power cycles but few studies considered using this cold directly on other cold applications. In this paper, different cold recovery approaches are considered and compared depending on the energy carriers (i.e. electricity, liquid carbon dioxide, chilled water, liquid air/nitrogen and latent heat storage) used to support a few cold applications (i.e. air separation units, dry ice production, freezing and district cooling). Using different transportation methods, these energy carriers produced using the recovered cold as part or all of their energy input is coupled to these cold applications with different temperature requirements and located 5 km away from the regasification facilities. This paper investigates the change in overall exergy efficiency and carbon dioxide emissions throughout the whole process from energy carrier generation to their consumption in the cold applications when the cold applications are coupled to different alternative energy carriers, compared with the baseline case. With the availability of these alternative energy carriers, conventional cold applications can be modified to reduce their dependency on electricity and improve their performance. The baseline setup has an overall exergy efficiency of \approx 13% while using electricity generated by waste cold assisted power cycles as energy carrier yields overall exergy efficiency of \approx 13.2%. Using alternative energy carriers charged with recovered cold, such as liquid carbon dioxide/water, latent heat thermal storage and liquid nitrogen, yields lower overall exergy efficiencies of \approx 9.7%, 11.5% and 10.2%, respectively which is largely due to the temperature mismatch and thus large amount of exergy destructions during the heat exchange process. For the carbon dioxide emissions analysis, the baseline setup yields carbon dioxide emissions of \approx 22.3 kTPA. Using electricity generated with waste cold assisted power cycle yields improvement on carbon dioxide emissions of $\approx 18.3\%$ while those using alternative energy carriers yield improvements on carbon dioxide emissions of $\approx 38.0\%$, $\approx 37.0\%$ and $\approx 6.0\%$, respectively.

1. Introduction

Use of natural gas is expected to grow significantly over the next decades due to its abundance and relatively lower environmental impact when compared with oil and coal. Pipelines are usually employed to distribute natural gas from the production site to the consumers. However, it is shown that for long distance transport of natural gas, liquefied natural gas (LNG) is proven to be more cost effective and has higher flexibility [1]. During the liquefaction process, the volume of natural gas is reduced to 1/600th the original volume, with its temperature reduced to below -160 °C. LNG is normally regasified before

distributed to end users, with about 860 kJ/kg of heat energy absorbed [2] or 370 kJ/kg of cold exergy released [3] in the process. Conventional LNG regasification involves direct heat exchange between the LNG and sea water or other heat sources, meaning that the cold energy is wasted alongside with large mechanical power required to drive the seawater pumps. With the projection of world LNG trade from about $1.53 \cdot 10^{11}$ tonnes in 2012 to about $3.70 \cdot 10^{11}$ tonnes in 2040¹ [4], the waste cold energy during the regasification process should be meaningfully reused and monetized by LNG plant operators.

Various processes to recover the LNG cold have been discussed and implemented in different countries, as reported in Table 1 [5–7]. As the

* Corresponding author.

https://doi.org/10.1016/j.enconman.2018.08.028

0196-8904/ © 2018 Elsevier Ltd. All rights reserved.

E-mail address: a.romagnoli@ntu.edu.sg (A. Romagnoli).

¹ LNG density is assumed as 450kg/m³ or 12.74kg/ft³

Nomenclature E_L exergy loss as waste stream [kJ kg ⁻¹]				
		E_M	exergy contained in material stream $[kJ kg^{-1}]$	
Acronyms		E_P	physical exergy [kJ kg ⁻¹]	
		E_R	exergy recovered $[kJ kg^{-1}]$	
ASU	Air separation unit	f	friction factor [–]	
CC	Combustion chamber	h	specific enthalpy [kJ kg ⁻¹]	
COP	Coefficient of performance	Н	convective heat transfer coefficient [–]	
CP	Compressor	k	thermal conductivity $[W m^{-1} °C^{-1}]$	
EP	Expander	L	length of pipe [m]	
HPC	High pressure column	ṁ	mass flow rate $[kg s^{-1}]$	
HRSG	Heat recovery steam generator	R	thermal resistance [$^{\circ}CW^{-1}$]	
HX	Heat exchanger	s	specific entropy $[kJ kg^{-1} °C^{-1}]s$	
JV	Joule-Thompson valve	V	velocity of working fluid [m s ⁻¹]	
LNG	Liquefied natural gas	Ŵ	power [W]	
LN_2	Liquid nitrogen		×	
LO_2	Liquid oxygen	Subscripts		
LPC	Low pressure column			
MSHE	Multi stream heat exchanger	ASU	air separation unit	
PCM	Phase change material	BCC	baseline combined cycle	
PP	Pump	CC	combustion chamber	
SC	Separation column	CP	compressor	
		cond	conduction	
Chemical symbols		conv	convection	
		CW	chilled water	
CO_2	carbon dioxide	DF	deep freezing	
		DI	dry ice production	
Greek symbols		EP	expander	
		HX	heat exchanger	
η_{ex}	exergy efficiency [%]	in	inlet	
η_{th}	thermal efficiency [%]	ins	insulation	
η_{net}	net efficiency [%]	JV	Joule-Thompson valve	
ΔT	temperature difference [°C]	LAPC	LNG assisted power cycle	
ρ	density [kg/m ³]	LCO_2	liquid carbon dioxide	
		misc	miscellaneous	
Roman symbols		NG	natural gas	
	· · · · · ·	out	outlet	
A	heat transfer area [m ²]	PP	pump	
D	pipe diameter [m]	TN	thermal network	
e	specific exergy [kJ/kg]	TS	thermal storage	
E_C	chemical exergy [kJ/kg]	0	reference condition	
E_D	exergy destroyed [kJ/kg]			
E_{IN}	inlet exergy [kJ/kg]			

world's largest importer of LNG, Japan demonstrates a large variety of LNG cold recovery technologies in use. Between 20 and 30% of LNG cold energy is utilized in Japan [6], with Osaka Gas Co. becoming the first plant in Japan to achieve 100% utilization of LNG cold energy by cascading cold applications with different temperature requirements for cold exchange with the LNG to be regasified [8]. South Korea as the world's second largest importer of LNG has also utilized LNG cold for

Table 1

Processes and countries where LNG cold energy recovery has been implemented [5–7].

Process	Temperature range (°C)	Country
Air separation	-191 to -130	China, France, Japan, South Korea
Electricity generation	-160 to 0	Japan
Hydrocarbon liquefaction	-120 to -60	Japan
Cryogenic comminution	-110 to -60	Japan, South Korea
Liquid CO ₂ /dry ice	-60	Japan
Refrigeration/cold storage	-30 to 0	Japan, South Korea
Seawater desalination	-10 to 10	United States
Gas turbine inlet air cooling	0–10	India, Japan

air separation and cryogenic comminution [9].

Several research studies discuss utilizing the LNG cold energy to improve efficiencies of different power cycles by reducing the compressor inlet temperature in Brayton Cycles or reducing the working fluid condensation temperature in Rankine Cycles or Kalina Cycles [3]. In addition, direct expansion cycle of regasified LNG through a turbine is also used to harvest the mechanical exergy contained in LNG. Table 2 reports some of the power cycles which utilize LNG cold energy to improve thermal and exergy efficiency [10–36], with thermal and exergy efficiencies tabulated as η_{th} and η_{ex} , respectively.

With correct choice of working fluid for the power cycles, LNG cold can be utilized at different temperature ranges well below ambient temperature. By decreasing the condensation temperature of the working fluid between ≈ -50 °C and ≈ -120 °C (as reported in [20–22,25,33] in Table 2), efficiencies between $\approx 12\%$ and $\approx 34\%$ can be achieved even with low to medium temperature heat sources, such as seawater, solar power or industrial waste heat. Rankine cycles with carbon dioxide (CO₂) as working fluid [26,28,30,31] can undergo a larger change of temperature when compared to organic working fluids and this allows a high-temperature heat source, such as combustion heat to be used. As a result, the process achieves higher thermal Download English Version:

https://daneshyari.com/en/article/7157759

Download Persian Version:

https://daneshyari.com/article/7157759

Daneshyari.com