Contents lists available at ScienceDirect

Energy Conversion and Management

Energy Conversion Management

journal homepage: www.elsevier.com/locate/enconman

Preliminary conceptual exploration about performance improvement on supercritical CO₂ power system via integrating with different absorption power generation systems

Hang Li^{a,b}, Mengjuan Xu^a, Xiao Yan^{b,c}, Jiaqi Li^{b,d}, Wei Su^{b,e}, Jiangfeng Wang^a, Yiping Dai^{a,*}

^a Institute of Turbomachinery, State Key Lab of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

^b Energy Transport and Research Laboratory, Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA ^c Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

^d Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou 310027, China

^e School of Energy and Environment, Southeast University, Nanjing 210096, China

ARTICLE INFO

Keywords: Supercritical CO₂ power system Absorption power generation system Parametric analysis Intelligence algorithm optimization Exergy analysis

ABSTRACT

Supercritical CO_2 (sCO_2) power system has been investigated by many scholars due to its attractive advantages of higher efficiency, compact system structure and eco-friendly working fluid. In this paper, some preliminary conceptual exploration about performance improvement on sCO_2 power system by integrating with two types of absorption power generation (APG) systems are conducted. Parameter analysis, genetic algorithm (GA) optimization and exergy analysis are carried out quantitatively for the proposed combined sCO_2/APG systems based on the self-built simulation platform from the viewpoints of thermodynamics and economics. Parameter analysis results reveal that there exist optimal compressor pressure ratio to maximize the thermal efficiency or minimize the total product unit cost. Higher turbine inlet temperature and lower absorber temperature could contribute to the overall system performance. In addition, compared with the stand-alone sCO₂ system, improvements of 5.98% and 5.07% in thermodynamics as well as promotion of 4.24% and 2.19% in economics can be obtained for sCO₂/LiBr-H₂O system and sCO₂/ammonia water system, respectively. Furthermore, exergy analyses show that the main exergy destructions occur in the reactor and the cooler and the proposed combined sCO₂/APG system could effectively reduce around half of the exergy destruction within the cooler of the stand-alone sCO₂ system.

1. Introduction

Nowadays, energy situation and environmental pollution problems become increasingly severe, especially in developing countries. Exploring renewable energy and developing high-efficiency energy conversion system are effective methods to relieve current situation. The sCO_2 power system, as a type of promising energy converter, attracts a great deal of attention due to the advantages of high efficiency, compact construction. Besides, the CO_2 working fluid is eco-friendly, safe and non-toxic [1–3].

Various heat sources including nuclear energy [4], solar energy [5], geothermal energy [6] and other industries [7] can be exploited by the sCO_2 power system. Nuclear energy, as a kind of environmentally friendly, economical and reliable energy, has been considered as the potential alternative to currently widely used fossil fuels. The sCO_2

power system is much more appropriately applied to the conventional pressurized water reactors [8] and nuclear fusion reactors [9]. Dostal [10] found that the recompression layout was the best configuration for the next generation nuclear reactor application.

The main work about the recompression sCO_2 power system mainly focuses on the basic theoretical analysis and key devices investigation, including system thermodynamic analysis [11], economic analysis [12], off-design analysis [13], dynamic behaviors analysis [14], turbomachinery design [15], and heat transfer enhancement [16] up to now. Jahar [11] performed an exergetic analysis and optimization for the recompression sCO_2 power system. He found that the system second law efficiency was much more sensitive to isentropic efficiency of the turbine than that of the compressor. Floyd et al. [13] studied the system off-design behaviors for the seasonal variation in the heat sink diversification on the basis of the preliminary design of the main

* Corresponding author.

E-mail address: ypdai@mail.xjtu.edu.cn (Y. Dai).

https://doi.org/10.1016/j.enconman.2018.07.075

Received 23 March 2018; Received in revised form 27 June 2018; Accepted 24 July 2018 0196-8904/@ 2018 Published by Elsevier Ltd.

Nomenclature

		CO_2	working nulu	
Α	area, m ²	ch	chemical	
С	solution concentration	compon	onents system components	
Ċ	cost rate, h^{-1}	core	reactor core	
CRF	capital recovery factor	cw	cooling water	
с	cost per exergy unit, GJ^{-1}	ex	exergy efficiency	
cp,total	total product unit cost, GJ^{-1}	in	flow into	
eff	efficiency, %	k	serial number of system component	
Ε	exergy, kJ	net	net power	
Ė	exergy rate, kJ·h ⁻¹	out	outlet	
е	specific exergy, kJ·kg ⁻¹	ph	physical	
h	specific enthalpy, kJ·kg ⁻¹	pump	working fluid pump	
Ι	exergy destruction, kJ	ref	reference value	
i	interest rate, %	S	isentropic process	
Μ	molar mass	th	thermal	
т	mass flow rate, $kg \cdot s^{-1}$	total	sum	
n	system service length, year			
р	pressure, kPa	Abbrevia	<i>viations</i>	
PR	compressor pressure ratio			
Q	heat rate, kW	Abs	absorber	
\$	entropy, $kJ\cdot kg^{-1}\cdot K^{-1}$	AMW	ammonia water	
Т	temperature, °C	APG	absorption power generation	
W	power, kW	AST	absorption turbine	
x	mass separation ratio	GA	genetic algorithm	
Ζ	capital cost of component, \$	Gen	generator	
Ż	capital cost rate, h^{-1}	HTR	high temperature recuperator	
		LTR	low temperature recuperator	
Greek symbols		LiBr	lithium bromide	
		MC	main compressor	
η	efficiency, %	ORC	organic Rankine cycle	
γ	weighting coefficient	PCHE	print circuit heat exchanger	
τ	annual plant operation hours	RC	recompression compressor	
ε	effectiveness	SHX	solution heat exchanger	
ΔT	temperature difference, K	ST	sCO_2 turbine	

sCO₂

 tCO_2

supercritical CO₂

transcritical CO₂

1

Subscripts

0

dead (environmental) state

components. They revealed that a degree-of-freedom of the compressor performance was needed to gain high efficiency and constant thermal power under the elevated heat sink temperature conditions. Minh et al. [17] made an investigation on the advanced control strategies of the recompression sCO₂ power system driven by solar energy and presented its dynamic behaviors. They found that compared with the traditional process, a significant improvement up to 37.1% in total energy output can be provided by means of the inventory control scheme.

Furthermore, it has already been a well-accepted fact from the literature that the overall performance of the recompression sCO₂ power system can be enhanced via integrating with different low-grade waste heat recovery systems to make the utmost of the heat of cooling. Many scholars have done amounts of work on this. Akbari et al. [18] proposed the combined sCO₂/ORC (organic Rankine cycle) system and performed a detailed thermodynamic and exergoeconomic analysis. They observed that the most cost-saving operation condition could be got when RC318 refrigerant was used. Wang et al. [19,20] suggested a combination of sCO₂ system and tCO₂ system to strengthen the performance of standalone recompression sCO₂ power system. Their optimization results pointed out that the combined sCO₂/tCO₂ system had a comparable exergetic efficiency with the sCO2/ORC system. Li et al. [21] integrated the recompression sCO₂ power system with a low-temperature regenerative Kalina system. Their results showed that the second law efficiency and total product unit cost of the proposed combined sCO₂/

Kalina system were able to gain 5.50% and 8.02% improvement, respectively.

Apart from the above investigation, some scholars devoted to investigate the combination of recompression sCO₂ power system with absorption systems. As is well-known, absorption system mainly using the LiBr-H₂O solution or ammonia water as working fluids can be driven by low-grade heat to produce refrigeration or more low-temperature heat. The mixture working fluids can provide a better thermodynamic match in temperature with the heat source and heat sink [22]. Wu et al. [23] connected the absorption refrigeration system with the recompression sCO₂ power system to produce power and cooling together. They found that the combined system could produce 71.76 MW cooling at the expense of 0.36 MW electric power under the basic design conditions. Li et al. [24] made a comparative study utilizing LiBr-H₂O solution and ammonia water as working fluids to recover the heat of cooling from the recompression sCO₂ power system. They revealed that the combined sCO₂/LiBr-H₂O system had a greater potential in terms of generating cooling and power. Recent years, a novel conception, called absorption power generation system, was proposed to recover the low-grade heat based on the characteristics of mixture [25]. Shokati et al. [26] made a comparative analysis between Rankine cycle system and APG cycle system. They argued that LiBr-H₂O system with the lowest exergy destruction cost rate had the highest thermal efficiency.

	Energy Conversion and Management		
,2 14;	01,02 012 state points		
O_2	working fluid		
h	chemical		
omponer	nts system components		
ore	reactor core		
w	cooling water		
x	exergy efficiency		
n	flow into		
:	serial number of system component		
let	net power		
out	outlet		
h	physical		
oump	working fluid pump		
ef	reference value		
	isentropic process		
h	thermal		
otal	sum		
Abbreviati	ions		
Abs	absorber		
MW	ammonia water		
APG	absorption power generation		
ST	absorption turbine		

Download English Version:

https://daneshyari.com/en/article/7157765

Download Persian Version:

https://daneshyari.com/article/7157765

Daneshyari.com