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A B S T R A C T

The distribution model of wind-speed data is critical for the assessment of wind-energy potential because it
reduces uncertainties in the estimation of wind power output. Thus, an accurate distribution model for de-
scribing wind-speed data should be determined before a detailed analysis of energy potential is conducted. In
this study, information from several goodness-of-fit criteria, e.g., the R2 coefficient, Kolmogorov–Smirnov sta-
tistic, Akaike’s information criterion, and deviation in skewness/kurtosis were integrated for the conclusive
selection of the best-fit distribution model of wind-speed data. The proposed approach integrates standardized
scores and subjects each criterion to multiplicative aggregation. The approach was applied in a case study to fit
eight statistical distributions to hourly wind-speed data collected at two stations in Malaysia. The results showed
that the proposed approach provides a good basis for the selection of the optimal wind-speed distribution model.
Furthermore, graphical representations agreed with the analytical results.

1. Introduction

The use of wind energy was rapidly expanded worldwide to address
with the crisis of energy shortages, environmental pollution, and cli-
mate change [1–3]. In fact, the global annual production rate of wind
power was constantly increased in tandem with technology maturation
and decreases in energy generation costs [4]. Nowadays, wind energy is
a major resource of renewable energy that could supply more than 40
times of the annual global electricity consumption [5,6]. The increasing
use of wind energy also reflects the growing awareness of many
countries to provide clean and safe energy. In addition, the application
and development of wind power as a renewable energy source provides
several advantages, such as cost-effectiveness; facile transportation; and
opportunities for employment, research, economic activity, and in-
dependence in the electricity sector [7–9].

The appropriate and accurate modeling of wind-speed data is an
important step in investigating the potential of wind energy because the
production of wind power is strongly dependent on the characteristics
and the capacity of wind magnitude [10]. The distribution model re-
presented the variation and uncertainty of wind speed data in esti-
mating the available energy potential [11]. A review of the literature
shows that numerous studies have described the application of various
distribution models in estimating and evaluating the potential of wind
power in a particular region. In fact, the Weibull distribution is a widely
used model in the wind industry sector. For examples, the information

from the Weibull distribution has been used to estimate the wind power
corresponds to the wind turbine capacity factor [12–15]. Apart from
that, the Weibull distribution has also been used in many applications
such as, the model estimation for evaluating the wind power perfor-
mance system [16,17], the failure model for the wind turbine [18], the
power curves estimation for wind turbine related to the power output
[19], statistical mapping of wind power characteristics [20–26], the
degradation model for wind turbine [27] and many more, see [28–50].

However, not all wind regimes can be modeled using the Weibull
distribution. For examples, Aries et al. [51] used eight distribution
models, namely, Gamma, Weibull, Lognormal, Gumbel, Generalized
Logistic, Nakagami, and Inverse Gaussian distribution to model wind-
speed data collected from four different sites in Algeria. They found that
different distribution models could be used to best fit the data collected
from each different site. Jung and Schindler [6] comprehensively as-
sessed global wind-speed data by using 24 different single-distribution
models and 21 mixed-distribution models. They also used different
distribution models to show the spatial information of different regions.
Ouarda et al. [52] evaluated 13 parametric wind speed distribution
models to describe the data of wind speed in several sites within the
United Arab Emirates (UAE). Based on the goodness-of-fit assessment,
they found that different sites have different suitable models for wind
speed data. Kantar et al. [53] used the Gamma, Weibull, Rayleigh,
Lognormal, and extended generalized Lindley distribution to model
wind-speed data collected from four stations in Turkey. They also found
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that distribution models other than the Weibull could be a good alter-
native model for wind-speed data collected from different locations.
Alavi et al. [54] compare 8 different distribution models to determine
the best model for offshore wind speed calculations in east and south-
east parts of Iran. The results of their study conclude that the Gamma,
Inverse Gaussian, Nakagami and Generalized Extreme Value distribu-
tion can perform better for modeling wind speed compared with the
Weibull. Carta et al. [55] provided a comprehensive review of the wind
speed distribution models. They have determined that 11 of the wind
speed distribution models have been used by most of the researchers all
over the world for modelling and assessing wind energy potential.
Apart from that, there are many research studies that have performed
an analysis regarding wind energy by considering several distribution
models simultaneously to provide more accurate results for wind en-
ergy calculation and estimation (see [56–67]). In summary, the litera-
ture reviews concluded that different distribution models will tend to
represent different characteristics of different wind regimes. Thus, the
selection of an accurate distribution model is an important issue that
needs to be addressed before performing further analysis.

The selection of an accurate distribution model for wind-speed data
involves the measurement of several criteria, such as the R2 coefficient,
Akaike information criterion (AIC), and Kolmogorov–Smirnov (K–S)
statistic. Given that different measurement techniques and criteria can
be used to evaluate the goodness-of-fit of the distribution model, pro-
blems will be encountered when some methods do not provide con-
clusive results (variation among the results for each method).
Therefore, this study attempt to resolve this issue by proposing an in-
tegrated approach in determining the best model selection for wind
speed data. The proposed approach involves the integration of several
main criteria.

2. Wind-speed distribution models and parameter estimators

The estimated power of wind energy is generally calculated on the
basis of the wind power equation, which is given as:

=P X Aρ X C λ β( ) 1
2

( , )E k p
3

(1)

Eq. (1) describes that wind power is dependent on a proportion of
the cube for wind speed X with a constant air density ρk and the area
(A) of the airstream that has been measured at a plane perpendicular to
the direction of wind speed. C λ β( , )p is the power coefficient that
considers Betz’s law for a particular type of wind turbine being used
[7,68]. In Eq. (1), the term =P x Aρ C λ β( ) ( , )w k p

1
2 describes the power

curve for a specific wind turbine. The power curve P x( )w can be de-
termined accurately on the basis of the specification of a particular
wind turbine. Thus, the only stochastic component that influences the
variation and uncertainty of wind-energy production is contributed by
the wind-speed variable X. This implies that a distribution model for
wind speed f(x) has to be utilized to cope with the variation and un-
certainty in the estimation of wind-energy production.

In the engineering practice, the estimated mean of the wind energy
which produced by a wind turbine is associated with the distribution
model which given by the following equation:

∫=
∞

P P x f x dx¯ ( ) ( )w w0 (2)

Thus, a highly accurate distribution model for wind speed f(x) will
yield an accurate estimate of the potential of wind energy [62,66,68].

This study evaluates some of the most commonly used distribution
models in the previous studies on wind-speed data in Malaysia. These
models include the Lognormal (LN), Weibull (WE), Rayleigh (RY),
Exponential (EX), Burr (BR), Gamma (GA), Inverse Gaussian (IGU) and
Inverse Gamma (IGA) [7,60,69]. Table 1 shows a list of the statistical
distribution models and their maximum likelihood estimators (MLEs).

3. Data and parameter estimation

The data used in this study were obtained from the Department of
Environment Malaysia. Two stations in Peninsular Malaysia were se-
lected for this study: Kuantan and Balok Baru. Hourly wind-speed data
collected over the period of January 1, 2000 to November 30, 2009
were used. The missing values in the data are found to be missing at
random points. In fact, the data have a small percentage of missing
value. Thus, to impute any particular missing values in the data, the
method of single imputation based on the average of the last known and
next known observations to the missing values are applied. This method
is easy to be implemented and it’s able to provide a good result for a
missing data with random behaviors [70]. Apart from that, the loca-
tions of both meteorological stations are shown in Fig. 1.

The MLEs of the WE, GA, IGU, IGA, and BR parameter distributions
can be numerically determined on the basis of the observed wind-speed
data through several methods, such as Newton–Rapson, scoring, EM
algorithm, quasi-Newton, and Nelder–Mead. This study used the
Nelder–Mead method as an optimization technique to determine the
MLEs of the parameters [71]. The MLEs can also be easily determined
for other distributions, such as LN, RY, and EX. Table 2 shows the re-
sults of the parameters for each distribution estimated through the MLE
method.

4. Criteria for the selection of the best wind-speed distribution

Various techniques and criteria have been applied to determine the
best statistical models for wind-speed data. The most commonly used
model for wind-speed model selection is measurement based on ob-
served and predicted data from a fitted model using criteria, such as R2

coefficient, mean absolute percentage error (MAPE), root-mean-square
error (RMSE), or mean absolute (MAE). A low 1-R2 value is indicative of
the good fit of the theoretical distribution to the experimental data. The
1-R2 value usually provides information similar to that provided by
MAPE, RMSE, or MAE. The R2 coefficient is used to quantify the cor-
relation between observed probabilities and predicted data from a
distribution model. The R2 coefficient is characterized by
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i1 . The estimated cumulative ̂F is derived from the
proposed distribution model. A high R2 value indicates the good fit of
the model of the cumulative function ̂F to the empirical cumulative
probability F . The R2 coefficient has been used by numerous re-
searchers to determine a suitable wind-speed distribution model as in
[28,51–54,57,58,63,72]. However, in this study, the 1-R2 value given
that low criterion values are preferred.

Another criterion for model selection is based on the empirical
distribution function (EDF), such as the K–S statistic. The EDF approach
also includes the Cramer-von Mises and Anderson–Darling statistics.
However, the K–S statistic is the most popular goodness-of-fit technique
among all EDF techniques. It is calculated by comparing the cumulative
distribution of the observed data versus that of the fitted data. The EDF
Fn for n observations is defined as
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where ⩽IX xi is an indicator function. The indicator function will be
equal to 1 if Xi≤ x and 0 otherwise. The K-S statistic for a given the-
oretical cumulative distribution function F(x) is given by

= −D F x F xsup| ( ) ( )|n
x

n i i
i (5)

N. Masseran Energy Conversion and Management 173 (2018) 56–64

57



Download English Version:

https://daneshyari.com/en/article/7157785

Download Persian Version:

https://daneshyari.com/article/7157785

Daneshyari.com

https://daneshyari.com/en/article/7157785
https://daneshyari.com/article/7157785
https://daneshyari.com

