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A B S T R A C T

Model predictive control has proved to be a promising control strategy for improving the operational perfor-
mance of multi-source thermal energy generation systems with the aim of maximising the exploitation of on-site
renewable resources. This paper presents the formulation and implementation of a model predictive control
strategy for the management of a latent heat thermal energy storage unit coupled with a solar thermal collector
and a backup electric heater. The system uses an innovative Phase Change Material slurry for both the heat
transfer fluid and storage media. The formulation of a model predictive controller of such a closed-loop solar
system is particularly desirable but also challenging mainly due to the nonlinearity of the heat exchange and
thermal storage processes involved. A solution for the model predictive control problem to regulate a system
with intrinsic nonlinearities is introduced using a mixed logic-dynamical approach. The model predictive control
regulation is tested and compared with a baseline rule-based controller considering both ideal and estimated
disturbance predictions. Results demonstrate the capability of the predictive controller in anticipating future
disturbances and in optimising the utilisation of the more efficient energy sources. When compared to the rule-
based controller, the model predictive control algorithm leads to reductions of the system primary energy de-
mand ranging from 19.2% to 31.8% as a function of the variation of a soft constraint on meeting demand
constraints. The work contributes to new knowledge on how model predictive control algorithms can be im-
plemented to maximise the benefits of integrating thermal energy storages that employ latent heat of fusion with
solar thermal technologies.

1. Introduction

The pursuit of higher levels of thermal comfort has led to a dramatic
increase in the use of energy in buildings in recent times. It has been
estimated that buildings are responsible for up to 40% of global energy
needs [1]. Thus, there is a pressing need to explore suitable technolo-
gies and innovative strategies with the aim to enhance the energy ef-
ficiency of buildings. Building energy consumption may be minimised
through a range of measures, including efficient envelope and Heating,
Ventilation and Air Conditioning (HVAC) system technologies. In order
to achieve low or zero carbon buildings [2], the remaining building
energy demand, once energy efficiency measures have been im-
plemented, can be met by renewable energy sources. Solar technologies
are the leading renewable energy solution suitable for addressing this
challenge at a building scale. However, the exploitation of solar energy
is often limited by its stochastic variation over time, and by the mis-
match between its availability and the energy demand of buildings and

consumers [3]. The implementation of advanced and model-based
regulation strategies, such as Model Predictive Control (MPC), are seen
as potential solutions for reducing this mismatch and consequently
enhancing the exploitation of renewable energy sources.

1.1. Principles of Model Predictive Control and applications in regulating
energy flows in buildings

MPC is a well-established method for optimised constrained control
in industrial processes, and recently, it has received increasing attention
in the field of building control. Prior to the past decade, practical im-
plementation of MPC in building automation systems was rare, largely
because of high computational demands in massive optimisation pro-
blems. However, MPC has become increasingly attractive due to the
increase in computational power of building automation systems, and
increasing availability of real-time monitored building data [4].

MPC can exploit both predictions of future disturbances (e.g.
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internal gains, weather, etc.) and operational requirements (e.g.
thermal comfort bands and maximum allowable energy demand), to
anticipate the energy needs of the building and optimise its thermal
behaviour from defined control goals. Constraints are included directly
in the optimisation problem, which is solved at each time-step [4]. In
general, an optimisation-based control strategy aims to find the optimal
trade-off between conflicting objectives (e.g. reducing the operational
building energy costs while ensuring satisfactory thermal comfort
conditions for building users).

The scientific literature offers a number of studies on the application
of MPC for energy management of buildings. Afram and Janabi-Sharifi
[5] described a framework for MPC implementation and Hilliard et al.
[6] outlined trends and opportunities for MPC implementation in
commercial buildings. Killian and Kozek [7] provided an extended
survey of the current and future potential applications for MPC building
thermal regulation, and some of the authors of the present paper have
presented a review of MPC algorithms for building thermal energy
management [4]. These works have covered the successful im-
plementation of MPC algorithms in various thermal and energy man-
agement strategies for buildings or building elements. MPC algorithms
have been studied for demand side management strategies in micro-
grids [8] and residential buildings connected with renewable energy
sources [9]. MPC algorithms have also been used for optimising the
thermal management of complex buildings [10], regulating domestic

appliances [11], enhancing the performance of photovoltaic systems
[12] or heat exchangers [13], and stand-alone energy supply systems
[14]. Further opportunities have been identified in peak load shifting
for systems used to deliver space heating or cooling [15] using MPC. In
[16] and [17], for example, the potential for thermally activated
building structures to be fully exploited using MPC is described. In [18],
a robust MPC problem was formulated to optimally regulate a building
conditioned with a variable air volume air handling unit. MPC has also
been effectively applied to active energy storage systems [19], as well
as for the optimal management of on-site renewable energy sources
[20].

Good examples of the practical implementation of MPC algorithms
in buildings include ten households in Brugg [21], the 3E Headquarters
in Brussels [22], a commercial Building in Allschwil [23], a building of
the Czech Technical University in Prague [17], the UC Merced Campus
[24], the Engineers Construction Engineering Research Laboratory
(CERL) in Champaign [25], and the airport of Adelaide [26]. These
examples cover several building typologies and are located in various
climates. They demonstrate that MPC can effectively reduce energy
consumption of HVAC systems and facilitate the integration of build-
ings into more flexible energy grids. The main drawback that has lim-
ited the widespread implementation of MPC controllers in building
automation systems has been the bottleneck represented by the need to
have a reliable mathematical model of the building [27].

Nomenclature

A state matrix
Bu manipulated input matrix
Bv measured disturbances matrix
C output matrix
cp specific heat capacity [kJ/kg °C]
Du, Dv direct transmission matrices
e slacking variable for the violation of the soft constraint

[kWhel/°C]
FR collector heat removal factor [–]
GT solar radiation incident per unit of surface area [kW/m2]
h specific enthalpy [kJ/kg]
m mass [kg]
Q weighting matrix on the states
Q̇dp heating power associated with the heat transfer fluid

[kWth]
Q̇he heating power delivered by the auxiliary heater [kWth]
Q̇hx heating power required by the secondary heat exchanger

[kWth]
Q̇he,max maximum power deliverable by the auxiliary heater

[kWel]
Q̇loss storage heat losses [kWth]
Q̇g heating power delivered by the solar thermal collector

[kWth]
Q̇need space heating demand [kWth]
R weighting matrix on the manipulated input
S surface area [m2]
t time [h]
T temperature [°C]
Tst,max, Tst,min storage unit maximum and minimum temperature

bounds [°C]
u manipulated input vector
U overall heat transfer coefficient [W/m2 °C]
v measured disturbances vector
V volume [m3]
Ẇhe electric power required by the auxiliary heater [kWel]
x system states vector
y system output vector

Greek symbols

δ pump operation (on/off)
ρ density [kg/m3]
(τα)e transmittance-absorptance product of the solar collector

[–]

Logic operators

∼ logic operator “not”
& logic operator “and”

Subscripts

10, 60, 90 pump speeds
a ambient air
coll solar thermal collector
in inlet of the solar thermal collector
inf,PCM lower phase change limit for the Phase Change Material
p prediction horizon
PCM Phase Change Material slurry
r reference value (or set-point)
st thermal energy storage unit
sup,PCM upper phase change limit for the Phase Change Material

Acronyms and abbreviations

COP Coefficient of Performance
EWY Example Weather Year
HVAC Heating, Ventilation and Air Conditioning
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MILP Mixed Integer Linear Programming
MIP Mixed Integer Programming
MLD Mixed Logical Dynamical
MPC Model Predictive Control
PCM Phase Change Material
RBC Rule Base Controller
SF Solar Factor
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