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Abstract: This paper presents a quaternion version of the well-known Line-of-Sight (LOS)
guidance algorithm for marine applications. The transformation from Euler angles is achieved
by exploiting the nature of the quaternion structure and using fundamental half-angle formulae
from trigonometry. First, the Euler angles version of the LOS guidance algorithm is briefly
presented for two uncoupled cases: a) the horizontal xy-plane, and b) the vertical zx-plane.
Then, a coupled case is also considered and the transformation procedure is presented for all
three cases. The vehicle considered pertains to a 5-DOF kinematics model where the roll angle is
neglected, typical of torpedo-shaped Autonomous Underwater Vehicles (AUVs). Naturally, the
Euler angles representation of the system involves singularities which, in the general 3-D space
navigation case, should be avoided. The presented method aims at providing a singularity-free
and computationally-efficient version of the conventional LOS algorithm.
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1. INTRODUCTION

The Line-of-Sight (LOS) algorithm is a well-documented
guidance method in both marine and aerial vehicles ap-
plications, see for instance Yanushevsky (2011), Breivik
(2010), Breivik and Fossen (2009). Its main advantages
are its simplicity and efficiency in generating appropriate
heading reference trajectories such that, when tracked by
the heading autopilot, they guarantee the vehicle’s smooth
convergence to the desired path. The method is based on
a simple geometry which, when it comes to marine appli-
cations, refers to the LOS vector starting at the vehicle’s
position and passing through a point p(xlos, ylos), which is
located on the path-tangential line at a lookahead distance
∆h > 0 ahead of the direct projection of the vehicle’s
position p(x, y) on to the path, this can be seen in Fig. 1.
The vehicle is then assigned to reach the constantly moving
point p(xlos, ylos) and this induces the desired steering
behavior.

The performance of the algorithm is affected by factors
such as the value of the lookahead distance, as well as the
convergence speed of the heading autopilot. Regarding the
lookahead distance, large values will result in a smooth
convergence, without oscillations around the desired path
but also more time-consuming. On the other hand, small
values will drive the vehicle faster on the desired path, but
this will usually lead to an oscillatory behavior. For this
reason, several variable lookahead distance methods have
been proposed in the past (Pavlov et al., 2009; Oh and Sun,
2010; Lekkas and Fossen, 2012). The issue of the heading

autopilot convergence is usually studied by using cascaded
systems theory. In that context, the subsystem consisting
of the heading autopilot and the vehicle is considered
to be a perturbation to the subsystem consisting of the
LOS guidance and the vehicle, for more information the
interested reader is referred to Børhaug and Pettersen
(2005), Lekkas and Fossen (2012).

It is a well known fact that, in the general case, the Euler
angles representation of the 6-DOF kinematics involves
singularities for the pitch angles θ = ±90◦ (Fossen, 2011).
Consequently, it is useful to derive a quaternion version
of the conventional LOS guidance for AUVs. Moreover,
the quaternion representation is more computationally
efficient compared to Euler angles since it does not include
trigonometric functions. This makes it even more suitable
for applications involving unmanned vehicles where the on-
board computational power might be more limited. This
paper serves as the first step toward this direction. The
quaternion representation of the LOS algorithm is derived
for two uncoupled 3-DOF cases: a) the horizontal xy-
plane, and b) the vertical zx-plane, and for a coupled case
where the sideslip angle is also a function of the vertical
motion. For each case, the terms of the guidance law are
transformed from Euler angles to quaternion by taking
into account the nature of quaternions that correspond to
rotations and using simple trigonometric identities.

The rest of this paper is organized as follows: Section 2
presents the vehicle model considered. In Section 3, the
Euler representation of the LOS guidance algorithm is
presented for the uncoupled horizontal and vertical planes
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Fig. 1. Line-of-sight guidance geometry for straight lines
in the xy plane. Here the sideslip angle is equal to
zero.

as well as the coupled case. The quaternion transformation
for the uncoupled horizontal plane is given in Section 4,
for the uncoupled vertical plane in Section 5 and for the
coupled case in Section 6. Some simulation results can be
found in Section 7, and Section 8 concludes the paper.

2. VEHICLE MODEL

2.1 Vehicle Dynamics

Following the methodology of Børhaug and Pettersen
(2005), for the path-following task we can neglect the roll
angle, hence for an underactuated autonomous vehicle the
following 5-DOF dynamic model can be used:

η̇ = J(η)ν, (1)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ , (2)

where M is the mass and inertia matrix, C(ν) is the
Coriolis and centripetal matrix, D(ν) is the damping
matrix, g(η) describes the gravitational and buoyancy
forces, and τ includes the control forces and moments.

Accordingly, the generalized position and velocity are
recognized as:

η = (x, y, z, θ, ψ)T, ν = (u, v, w, q, r)T, (3)

where (x, y, z) is the vehicle’s inertial position in Cartesian
coordinates, θ is the pitch angle and ψ is the yaw angle.
In addition, u is the surge velocity, v is the sway velocity,
w is the heave velocity, q is the pitch rate and r is the yaw
rate.

2.2 Vehicle Kinematics

The model considers only absolute velocities and is the
following, see Børhaug and Pettersen (2005):

ẋ = u cos (ψ) cos (θ)− v sin (ψ) + w cos (ψ) sin (θ), (4)

ẏ = u sin (ψ) cos (θ) + v cos (ψ) + w sin (ψ) sin (θ), (5)

ż = −u sin (θ) + w cos (θ), (6)

θ̇ = q, (7)

ψ̇ =
1

cos(θ)
r, cos (θ) 6= 0. (8)

3. EULER REPRESENTATION OF THE LOS
GUIDANCE LAW

3.1 Horizontal Plane LOS Guidance

In the case of decoupled horizontal plane path-following we
assume that θ = 0◦, consequently the kinematics equation
to be considered is:

ẋ = u cos(ψ)− v sin(ψ), (9)

ẏ = u sin(ψ) + v cos(ψ), (10)

ψ̇ = r. (11)

The horizontal-plane speed Uh is given by:

Uh :=
√
u2 + v2, (12)

and is assumed to be positive and bounded:

Uh,min ≤ Uh ≤ Uh,max, 0 < Uh,min. (13)

From (12)–(13) it is implied that the vessel always has
at least a nonzero surge speed. The reason for setting a
minimum positive speed Uh,min is related to the stability
proof of the LOS algorithm and a more rigorous approach
is outside the scope of this paper and can be found in
Lekkas and Fossen (2013). The model (9)–(11) includes
only absolute velocities and describes the motion of an
underactuated vehicle since only two out of three DOF’s
can be controlled independently, namely the yaw angle and
the surge velocity.

Path Following Objective: Assuming that the vehicle is
assigned to converge to the line connecting the waypoints
WPk–WPk+1, the along-track and the cross-track error for
a given vehicle position (x, y) are given by:[

xe
ye

]
= R>(γp)

[
x− xk
y − yk

]
, (14)

where (xk, yk) is the position of the k-th waypoint ex-
pressed in the NED frame, and the rotation matrix from
the inertial frame to the path-fixed reference frame is given
by:

R(γp) =

[
cos(γp) − sin(γp)
sin(γp) cos(γp)

]
∈ SO(2). (15)

Moreover,

xe = (x− xk) cos(γp) + (y − yk) sin(γp), (16)

ye = −(x− xk) sin(γp) + (y − yk) cos(γp), (17)

where γp is the horizontal-plane path-tangential angle:

γp = atan2(yk+1 − yk, xk+1 − xk), (18)

Then, the associated control objective for horizontal plane
straight-line path-following is:

lim
t→+∞

ye(t) = 0. (19)

Note that the along-track error xe does not need to be
minimized in a path-following scenario, the contrary is
true for applications that impose temporal constraints.
The lookahead-based guidance law is given by (see Breivik
and Fossen (2009)):

ψd = γp + arctan

(−ye
∆h

)
. (20)

In the presence of external disturbances, or during turns,
the heading angle ψd and the course angle χd are not
aligned anymore and are related in the following way:

χd = ψd + β, (21)

IFAC CAMS 2013
September 17-20, 2013. Osaka, Japan

246



Download	English	Version:

https://daneshyari.com/en/article/715784

Download	Persian	Version:

https://daneshyari.com/article/715784

Daneshyari.com

https://daneshyari.com/en/article/715784
https://daneshyari.com/article/715784
https://daneshyari.com/

