Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

Dynamic simulation and thermoeconomic analysis of a novel solar cooling system for a triple-pressure combined cycle power plant

Francesco Calise, Luigi Libertini*, Maria Vicidomini

Department of Industrial Engineering, University of Naples Federico II, P.le Tecchio, 80, 80125 Naples, Italy

ARTICLE INFO

ABSTRACT

Keywords: Dynamic simulation Solar assisted triple-pressure combined cycle Flat evacuated collector Absorption chiller This paper presents the design of a novel high-temperature solar assisted triple-pressure level combined cycle power plant. The system includes innovative high-temperature flat plate evacuated solar thermal collectors, a double stage lithium bromide/water absorption chiller, pumps, heat exchangers, storage tanks, mixers, diverters, controllers and a triple-pressure combined cycle power plant. This novel layout uses high-vacuum non-concentrating flat plate solar thermal collectors driving a double effect absorption chiller, leading to an overall high coefficient of performance for the solar cooling section. The provided cooling energy is used to cool gas turbine inlet air to enhance system efficiency and electrical capacity. This effect is mainly performed during central hours of the day when the conventional gas-fired combined cycles dramatically suffer for efficiency and capacity reduction, as a consequence of the corresponding increase of external air temperature. Such increase is related to the higher availability of solar radiation. This technology may be a viable solution, especially for hot and dry areas, in terms of primary energy savings and increased revenues. This prototypal system was numerically analysed for a combined cycle with a rated electrical power of 99 MWe and an electrical efficiency of 56%, developing a dynamic simulation model and detailed thermo-economic optimizations. Special attention is also paid to the design of novel control strategies aiming at maximizing the solar cooling effect. The results of the dynamic simulations show a very high average thermal efficiency of the solar collectors, equal to 34%. Implications of the performed work allowed an increase of the power output up to 5.5% and a satisfactory payback period equal to 10.7 years.

1. Introduction

Among power plants supplied by fossil fuels, such as fuel cells [1], cogeneration [2], reciprocating engines [3], combined cycles (CCs) [4] and organic Rankine cycles (ORCs) [5], the most efficient, reliable and mature technology is currently represented by CCs [6]. This technology consists of a Brayton cycle, bottomed by a Rankine cycle, able to reach very high electrical efficiencies (also higher than 60% [7]). In order to design efficient power, industrial and academic institutions are working on different strategies, such as developing very detailed control strategies [8], improving turbomachinery efficiency [9], optimizing the plant configuration [10], and coupling fossil power plants with renewable energy systems [11].

In particular, the possibility to achieve a power increase in CCs through renewable sources is very attractive, especially when using solar energy [12]. The majority of CCs coupled with the solar source use a high-temperature solar field (parabolic trough collectors (PTC) or linear Fresnel collectors, for example) to increase the steam production

for the Rankine cycle [13]. In this kind of hybridization, the most adopted system layout integrates a CC and a solar steam generator driven by a PTC solar field [14]. This arrangement was firstly introduced by Luz Solar International in the 1990s and it is called integrated solar combined cycle (ISCC) power plant. ISCC power plants are especially attractive for regions where solar irradiation is high and an electrical demand is mainly affected by space cooling, especially during the sunny and hottest hours of the day.

In this framework, the power increase obtained through an ISCC layout can match the daily peaks of electricity demands [15] and, therefore, it was thoroughly analysed in several studies.

Behar et al. [16] reviewed the current status of ISCC technology, also listing the plants in operation and under construction around the world. In operation there are 140 MW, 150 MW and 470 MW power plants in Egypt, Algeria and Morocco, respectively. Several projects are under development in USA, Iran, Mexico, Italy, Kuwait and China [16]. Hence, the solar integration can easily balance the daily fluctuation of the electrical production [17] but hybrid solar CCs still need a

* Corresponding author.

E-mail address: maria.vicidomini@unina.it (L. Libertini).

https://doi.org/10.1016/j.enconman.2018.05.041

0196-8904/ \otimes 2018 Elsevier Ltd. All rights reserved.

amb

ambient

Nomenclature			ар	approach point	
			boil	boiling	
	<i>a</i> ₀	zero loss efficiency at normal incidence, –	b	beam	
	a_1	zero collector heat loss coefficient, W/m ² K	BOS	balance of system	
	a_2	temperature difference dependence of the heat loss coef-	ch	chilled	
		ficient, W/m ² K ²	CC 1	objective function one	
	a_3	heat loss coefficient referred to wind dependency, J/m ³ K	CC 2	objective function two	
	<i>a</i> ₄	long-wave radiation coefficient, -	CCU	cooling coil unit	
	<i>a</i> ₅	effective thermal capacitance of the collector, $J/m^2 K$	chw	chilled water	
	<i>a</i> ₆	wind speed dependence of the heat loss coefficient, s/m	D	duct	
	Α	area, m ²	dew	dew	
	с	unit cost, €/kW h or €/Sm ³	diss	dissipated	
	ср	specific heat, kJ/kg K	d	diffuse	
	COS	cost, €	el	electric	
	d	diameter, m	F	fin	
	Ε	energy, kW h/year or MW h/year	fl	fluid	
	E_L	long wavelength radiation (outside solar spectrum) onto	HP	high pressure	
		the collector plane, W/m^2	i	number of heat exchanger	
	FA	annuity factor, years	IP	intermediate pressure	
	Fc	fuel cost, €/Sm ³	Latent	latent	
	FO	objective function	LP	low pressure	
	Ga	economic gains. €/vear	NG	natural gas	
	н Н	height, m	on	activation	
	HEC	heat exchanger cost €	nn	pinch point	
	ні	Hooke-Jeeves	PP R	row	
	IAM	incidence angle modifier _	rof	reference	
	ISO	international standards organization	DC	reference system	
	150 1DD	solar irradiation kWh/m^2 or $MWh/waar$	SACC	color assisted combined evelo	
		total incident radiation W/m^2	SAUC	solar collector	
	T	total appital cost 6	SC SCaal	solar confector	
	J		30001		
	LCV	lower calorific value, J/kg	SOL	solar	
	m	now rate, kg/s	1	tube	
	ма	maintenance, €	th	thermal	
	N	number, –	0		
	PSO	bo particle swarm optimization		Components and toops	
	PW	power, kw	0		
	Q	thermal power, kW	C	compressor	
	q	flow rate, kg/h	CC3LP	triple-pressure level combined cycle	
	Sp	spacing, m	CCh	combustion chamber	
	SPB	simple pay back, years	CCU	cooling coil unit	
	T	temperature, °C or K	CH	chimney	
	Th	thickness, m	CHA	chilled air	
	T_m	arithmetic mean inlet - outlet temperature of the collector,	CHW	chilled water	
		°C	CO	condenser	
	и	wind speed in (parallel to) the collector plane, m/s	CSW	cooling sea water	
	U	heat transfer coefficient, kW/(m ² K)	D	diverter	
	UA	overall heat transfer coefficient, kW/K	DEA	deaerator	
	V	volume, m ³	DSG	direct steam generation	
	W	width, m	ECO	economizer	
			G	generator	
	Greek sym	bols	HESC	heat exchanger solar cooling	
			HRSG	heat recovery steam generator	
	β	collector slope	HTF	heat transfer fluid	
	ΔCOS	yearly economic saving, €/year	HW	hot water	
	ε	heat exchanger effectiveness, –	ISCC	integrated solar combined cycle	
	η	efficiency, –	Μ	mixer	
	λ	conductivity, W/mK	ORC	organic Rankine cycle	
	σ	Stefan-Boltzmann constant, W/m ² K ⁴	Р	pump	
		· ·	PrHe	pre-heater	
	Subscripts	and superscripts	PTC	parabolic trough collectors	
	1	- •	RH	reheater	
	а	air	SACC3LP	solar assisted triple-pressure level combined cycle	
	abs	absorber	SC	solar collectors	
	ACH	absorption chiller	SCW	solar collectors water	
		•			

SH	superheater

Download English Version:

https://daneshyari.com/en/article/7158086

Download Persian Version:

https://daneshyari.com/article/7158086

Daneshyari.com