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A B S T R A C T

In wind energy conversion systems, a power curve links the wind speed to the power produced by a wind turbine
and an accurate power curve model helps wind power providers to capture the performance of wind turbines.
For this purpose, this paper presents the implementation of novel hybrid approaches to the power curve mod-
eling process of wind turbines. As a result of employing the complementary phases called clustering, filtering and
modeling in this process, the k-means-based Smoothing Spline hybrid model achieves the most accurate power
curve in terms of sum of squared errors, coefficient of determination and root mean squared error. On the other
hand, the k-medoids++-based Gaussian hybrid model causes the most inconsistent power curve in terms of the
mentioned goodness-of-fit statistics. Furthermore, all of hybrid power curve models constructed in this paper
outperform the conventional linear, quadratic, cubic, exponential and logarithmic benchmark models with the
high improvement percentages. Finally, the proposed hybrid power curve models are shown not to be dependent
on the initial raw power curve data.

1. Introduction

With the population growth and economic development, the de-
mand for electricity is steadily increasing in the world. Due to the rapid
depletion and harmful emissions of fossil fuels, there is a growing trend
for installing solar photovoltaic, wind and biomass power plants in
order to prevent the possible energy crisis in the future [1,2]. Espe-
cially, wind power was found to be the world’s second largest annual
market with the capacity addition of 55 GW in 2016 [3]. In wind energy
conversion systems, wind turbine power curves play a significant role in
wind turbine selection, wind energy assessment, condition monitoring
and troubleshooting, and predictive control and optimization [4].
However, the power curve modeling of wind turbines is still a com-
pelling task owing to the operating conditions on site different from the
conditions under which wind turbines were calibrated [5]. In addition,
the empirical power curves are affected from environmental and to-
pographical conditions, maintenance and repairment, control system
issues, incorrect controller settings, sensor malfunctions, blade pitch
angle errors and blade damage [6]. For these reasons, it is needed to
model the wind turbine power curves in the form of reflecting the
normal turbine behavior.

Many different parametric and non-parametric methods have been
used in the literature. 6, 5, 4 and 3-parameter logistic functions were
applied for the power curve modeling of different wind turbines [7]. 5
and 3-parameter logistic functions were recommended according to the

intended use. Differential evolution-based 5-parameter logistic function
led to the encouraging modeling in terms of mean absolute error [8].
The combination of nonlinear autoregressive model with exogenous
variables and differential evolution-based 5-parameter logistic function
performed well in terms of root mean squared error and coefficient of
determination [9]. Modified hyperbolic tangent function, sixth-order
polynomial function and three-parameter exponential function were
compared for the power curve approximation of a wind turbine [10].
Three-parameter exponential function provided the lowest value of
mean absolute percentage error. Backtracking search, cuckoo search
and particle swarm optimization-based modified hyperbolic tangent
functions showed the promising approximation in terms of root mean
squared error [11]. Penalized spline regression outperformed poly-
nomial regression, locally weighted polynomial regression and spline
regression methods in terms of normalized mean absolute percentage
error and root mean square error [12]. 5th and 9th-order polynomial
functions, double exponential and logistic functions, k-nearest neighbor
regression and multilayer perceptron were employed for the site-spe-
cific characterization of wind turbine power curves [13]. Multilayer
perceptron demonstrated the lower levels of mean error and mean
absolute error.

Cubic spline interpolation and least square methodology gave ac-
curate mathematical modeling of the wind turbines having smooth
power curve [14]. Spline kernel function-based support vector machine
algorithm reflected the dynamic properties of a power curve having
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equal-size wind speed partitions at a low computational cost [15].
Differential evolution-based 5-parameter logistic function, k-nearest
neighbor regression, random forest regression, extremely randomized
trees and stochastic gradient boosted regression trees were utilized for
the data-driven power curve fitting of different wind turbines [16]. The
best fitting was achieved by the stochastic gradient boosted regression
trees in terms of mean absolute error. Generalized mapping regressor,
feed-forward multilayer perceptron and general regression neural net-
work methods were proposed for modeling the relationship between
wind power and wind speed [5]. The best models were found as general
regression neural network and generalized mapping regressor without
interpolation in terms of absolute error and symmetrical absolute per-
centage error, respectively. Cluster center fuzzy logic modeling pro-
duced the smaller root mean squared error than least square polynomial
methodology [17]. Adaptive neuro-fuzzy inference system, neural net-
work, cluster center fuzzy logic and k-nearest neighbor models were
built for monitoring the wind turbine power curve [18]. The adaptive
neuro-fuzzy inference system accomplished the qualified monitoring
performance in terms of mean absolute error, mean absolute percentage
error and root mean squared error. In addition to these studies, there
are many other methods used for the power curve modeling of wind
turbines in the literature, such as approximate cubic function [19],
copula method [20], linearized segmented model [4], stochastic mod-
eling [21], least median of squares methodology [22] and extreme
function theory [23].

The majority of the literature has focused on different parametric
and non-parametric modeling of wind turbine power curves. However,
most of them ignore to divide the power curve modeling process into
simple, useful and efficient phases in order to capture the wind tur-
bine’s behavior in normal operational conditions. For this purpose, the
main motivation of this study is to constitute the power curve modeling
process with the clustering, filtering and modeling phases. In this fra-
mework, the main novelties of this study lie in the employment of k-
means, k-means++, k-medoids and k-medoids++ clustering techni-
ques with Squared Euclidean, City Block and Cosine distance measures
in the power curve clustering phase, in the application of multivariate
outlier detection approach based on Mahalanobis distance and chi-
square cumulative distribution to each created cluster in the power
curve filtering phase, and finally in the implementation of Polynomial,
Fourier, Gaussian, Sum of Sines and Smoothing Spline curve fitting
methods on the refined power curves in the power curve modeling
phase. In addition, all of hybrid power curve constructions are com-
pared in terms of sum of squared errors (SSE), coefficient of determi-
nation (R2) and root mean squared error (RMSE) in detail. As a result,
the proposed hybrid methodologies demonstrate the promising per-
formance for the wind turbine power curve modeling.

The remainder of this paper is organized as follows: Section 2 de-
scribes the mathematical background of the proposed hybrid power
curve modeling approaches. Section 3 elaborates the clustering, fil-
tering and modeling phases applied to wind turbine power curves. Fi-
nally, Section 4 states the conclusions together with future works.

2. The proposed hybrid power curve modeling approaches

In this subsection, the algorithmic procedure of the proposed hybrid
power curve modeling approaches is explained in detail. The hybrid
power curve modeling process is constituted with three main phases
called power curve clustering, power curve filtering and power curve
modeling in order to create very well-suited power curve models.

In the power curve clustering phase, the well-known partitioning
methods k-means and k-medoids and their commonly-used variants k-
means++ and k-medoids++ are employed for the highly-correlated
segmentation of power curve data. k-means and k-medoids algorithms
partition a set of n objects into k clusters with the purposes of increasing
intracluster similarity and decreasing intercluster similarity. In the k-
means algorithm, the similarity of each cluster is measured regarding

the mean value of all objects in that cluster as a reference point. In the
k-medoids algorithm, the dissimilarity of each cluster is determined
considering the medoid of all objects in that cluster as a representative
object. The partitioning process iterates until the convergence of
square-error function in the k-means algorithm and until the mini-
mization of absolute-error function in the k-medoids algorithm. The
square-error criterion (E1) and the absolute-error criterion (E2) are
defined as below [24,25], where k is the number of clusters, p is the
point representing an object in cluster Ci or Cj, mi is the mean of cluster
Ci and oj is the representative object of cluster Cj. The value of k is
assigned as 10 in this study.
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k-means++ and k-medoids++ algorithms are identical to k-
means and k-medoids algorithms, respectively, but differs in the initial
centroids/medoids setting. Instead of choosing the initial centroids/
medoids arbitrarily, k-means++ and k-medoids++ algorithms com-
pute the probability of how well a given point is doing acting as a
possible centroid/medoid [26]. The weighted probability distributions,
WPD1 for the cluster centroid initialization in k-means++ algorithm
and WPD2 for the cluster medoid initialization in k-medoids++ algo-
rithm are defined as below [27], where d p m( , )i denotes the distance
between p and mi and d p o( , )j denotes the distance between p and oj.
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The mentioned partitioning methods compute centroids/medoids
differently for the different distance measures. For this reason, Squared
Euclidean, City Block and Cosine distance measures are employed for
uncovering their effects on the nearest neighborhood recovery. These
distance measures are expressed as below [28,29], where X is the data
matrix with m objects and n dimensions, xi is the ith row of X and xj is
the jth row of X . In addition, the silhouette coefficient is utilized for
measuring the quality of clustering solutions. The silhouette value s i( )
of ith data point is expressed as below [30], where a i( ) represents the
average distance from ith data point to other data points in the same
cluster and b i( ) represents the minimum average distance from ith data
point to the points in other clusters. It should be noted that a silhouette
value close to 1 indicates that the corresponding data point is well-
matched to its own cluster and poorly-matched to other clusters.
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Table 1
Descriptive statistics of WP and WS parameters.

Statistics Parameters

WP (kW) WS (m/s)

Maximum value 2030.20 19.92
Mean value 688.286 9.252
Minimum value 0.23 5
Standard deviation 608.4436 3.1269
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