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A B S T R A C T

The mixed Burr-Generalized Extreme Value distribution (BGEV) and Gaussian copulas were used in a two-step
procedure for estimating the directional wind energy yield in 100m above ground level in Germany. In a first
step, BGEV was fitted to the marginal distributions of ERA-5 reanalysis horizontal wind vector component data
available from the European Centre for Medium-Range Weather Forecasts. Then, Gaussian copulas were fitted to
the bivariate distributions of the wind vector components. It is demonstrated that the combination of BGEV and
Gaussian copulas allows a very accurate simulation of the directional wind energy yield. Results from goodness-
of-fit evaluation indicate very good fit to virtually all wind speed-wind direction regimes reproduced by the ERA-
5 data in the period 2010–2016. The directional mean annual wind energy yield was simulated for eight wind
direction sectors by applying a 3.05MW wind turbine power curve. The simulation results illustrate that
Germany’s available wind energy is highly dependent on the wind direction. Mainly southwestern and western
flows contribute to the total mean annual wind energy yield. All other wind direction sectors contribute only to a
minor extend to the amount of extractable wind energy. The areas where mean annual wind energy yield is
highest are mostly located in Northern Germany at the North Sea and Baltic Sea coasts.

1. Introduction

In regions with one or more prevailing wind directions, wind re-
source assessment is challenging. This is because the available wind
resource varies as a function of the wind direction [1]. Therefore, it is
important to combine knowledge on empirical wind speed distributions
with information on empirical wind direction distributions [2].

The importance of including wind direction into wind resource as-
sessment has been emphasized in a number of previous studies. The
performance of wind turbines [3], clusters of wind turbines and wind
farms is wind direction-dependent [4]. Small variations in the wind
direction may considerably change the power output of wind farms [5].
The directional wind energy yield is an important factor for wind farm
radius and turbine distance constraints [6].

To maximize the total energy yield, the optimization of the micro-
siting of wind turbines being part of wind farms is indispensable [7].
This is especially true when wind farms are located in complex terrain
[8]. Then, an optimized alignment improves wind turbine performance
and minimizes wake effects [9]. On the other hand, misalignment of
wind turbines induces wake effects, which result in a decreasing per-
formance and power output [10].

The consideration of both wind speed and wind direction allows for

quantifying the variation of the harvesting direction for wind turbines
so that their efficiency can be maximized and costs can be reduced [11].
It has been demonstrated that accurate wind direction tracking max-
imizes wind power extraction [12]. The accuracy of simulations of wind
turbine wake-induced power losses improves when wind direction is
taken into account [13]. Moreover, including wind direction into wind
resource assessment improves wind turbine performance predictions
[14].

Not only on small spatial scales information about the variability of
wind direction is important. Comprehensive knowledge of wind direc-
tion distributions also helps estimating and maximizing the directional
wind energy yield on larger spatial scales such as the national scale. As
inherent part of the long-term wind climate, wind direction is a critical
issue in the selection process of candidate areas for wind farms [15].
Since the aggregate generation of wind farms also depends on the wind
direction, the inclusion of wind direction into statistical wind resource
models enables a more detailed analysis of large-scale wind power
generation [16]. Furthermore, consideration of the directional wind
energy yield helps improving national wind turbine installation sce-
narios and contributes to increasing the efficiency of future wind energy
expansion [17].

Up to now, the wind energy potential was often assessed without
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considering the influence of the wind direction on total wind energy
yield. This might be due to limited availability of wind direction dis-
tributions or difficulties arising from fitting wind direction distribu-
tions. In contrast to wind speed, wind direction varies on a circular
scale between 1° and 360°. This kind of variability requires the use of
distributions whose probability density functions account for the cir-
cular behavior of wind direction [18]. Therefore, the van Mises dis-
tribution and mixtures of the van Mises distribution, which allow fitting
distributions of circular variables, were used in wind energy applica-
tions [19]. The directional wind resource at individual sites was also
assessed by bivariate Farlie-Gumbel-Morgenstern copulas combining
information on wind speed and wind direction distributions [11].
Furthermore, the Johnson-Wehrly model, Farlie-Gumbel-Morgenstern
copulas and Plackett copulas were tested for their suitability for re-
producing bivariate distributions of wind speed and wind direction at
individual sites [15]. In a recent study focusing on wake effects on the
power output of wind farms, Frank copulas were used for describing the
dependence between wind speed and wind direction [20].

It is clear from the available studies that the wind energy yield

strongly depends on the wind direction. Therefore, this study in-
troduces a parsimonious methodology that directly fits bivariate wind
vector component distributions. In an earlier study [21], it was noted
that the directional wind energy yield should be estimated based on the
wind vector components to maintain the statistical dependence be-
tween wind speed and wind direction. Here, the wind vector compo-
nent-based approach is taken up again and further developed. The
further development allows its accurate application to virtually all wind
regimes in Germany present in the latest version of the European Center
for Medium-Range Weather Forecasts (ECMWF) reanalysis data (ERA-
5). It is demonstrated and evaluated that the methodology is well sui-
table for assessing the multi-annual directional wind energy yield in
Germany in the period 2010–2016.

2. Methodology

The assessment of directional wind energy yield introduced in this
study includes the following steps (Fig. 1): (1) obtaining hourly ERA-5
zonal u( ) and meridional v( ) wind vector component data for Germany

Nomenclature

Acronyms

a.g.l. above ground level
B Burr distribution
BGEV mixed Burr-Generalized Extreme Value distribution
C Gaussian copula
cdf cumulative distribution function
E east
ecdf empirical cumulative distribution function
ECMWF European Center for Medium-Range Weather Forecasts
ERA-5 reanalysis data
GC grid cell
GEV Generalized Extreme Value distribution
GoF goodness-of-fit
I identity matrix
N north
NE northeast
NW northwest
PP probability plot
Q quadrant
S south
SE southeast
SW southwest
T transpose of a matrix
W west

Symbols

AEY annual wind energy yield (GWh/yr)
AEY mean annual wind energy yield (GWh/yr)
cc two-dimensional correlation coefficient
d number of marginal distributions
D wind direction (°)
f probability density function
F cumulative distribution function
MAE mean absolute error (m/s)
n time series length
P U( ) wind turbine power curve (MW)
P mean wind turbine power output (kW)
R2 coefficient of determination
u zonal (west-east) wind vector component (m/s)

U wind speed (m/s)
v meridional (north-south) wind vector component (m/s)
x arbitrary variable
y arbitrary variable
β shape parameter of Burr distribution
η scale parameter of Generalized Extreme Value distribution
ι shape parameter of Generalized Extreme Value distribu-

tion
μ location parameter of Generalized Extreme Value dis-

tribution
o marginal distribution
π pi
σ scale parameter of Burr distribution
Σ covariance matrix
φ multivariate normal distribution
Φ cumulative distribution of the standard normal distribu-

tion
ψ shape parameter of Burr distribution
ω mixing parameter

Subscripts

B Burr distribution
BGEV mixed Burr-Generalized Extreme Value distribution
C Gaussian copula
d number of marginal distributions
E east
GEV Generalized Extreme Value distribution
i counter
j counter
mod modeled
N north
NE northeast
NW northwest
PP probability-probability plot
S south
SE southeast
SW southwest
u zonal (west-east) wind vector component
v meridional (north-south) wind vector component
W west
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