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A B S T R A C T

Adsorption technology is recognised to be a promising CO2 capture method due to its desirable characteristics
e.g. reusable nature of adsorbents, low capital investment and easy automatic operation. To further improve
thermal performance, internal heat recovery is adopted for adsorption CO2 capture through analogy with ad-
sorption refrigeration. Based on carbon pump theory, thermal performance of 4-step temperature swing ad-
sorption (TSA) processes is analysed at various adsorption/desorption temperatures and pressures. Exergy ef-
ficiency of adsorption CO2 capture with and without heat recovery will be evaluated and compared by using
experimental adsorption characteristics of activated carbon. Metal part and unused percentage of adsorption
reactor are defined to further assess their influence on system performance in real application. Results indicate
that sensible heat of adsorbents and adsorbed phase account for the major part of heat consumption. For dif-
ferent desorption/adsorption temperatures and pressures, theoretical exergy efficiency of 4-step TSA cycle
ranges from 0.022 to 0.221. Heat recovery is conducive to exergy efficiency. Through heat recovery, exergy
efficiency could be improved from 54.3% to 84.6% when mass ratio increases from 0 to 8. Similarly, the im-
provement by using heat recovery is up to 90% in terms of different unused percentages.

1. Introduction

Carbon capture and storage (CCS) has been gathering the mo-
mentum, which aims to prevent the release of large quantities of carbon
dioxide (CO2) to the atmosphere since it is considered to mitigate the
contribution of fossil fuel emissions to global warming and ocean
acidification [1]. Carbon capture technologies could be realized by
three main methods: pre-combustion capture, post-combustion capture
and oxyfuel combustion [2]. Among them, post-combustion capture
plays a leading role due to the advantage of retrofitting existing in-
dustrial stations. Post-combustion capture could be achieved through a
variety of methods e.g. cryogenic, membrane, adsorption, absorption
process, etc. [3].

Absorption is once considered as the most likely commercialized
technology for CO2 capture. Nonetheless, energy penalty for large-scale
application is also considerable [4]. It is extensively acknowledged that
absorption and adsorption have many similarities. Solid adsorbents
have several advantages e.g. low capital investment, easy to control,
reversible characteristics, which ensure a relatively good performance
for CO2 capture [5]. Selection of adsorbents is one of major methods to
improve the overall efficiency of CO2 adsorption process. Materials i.e.

zeolite 5A, zeolite 13X, activated carbon (AC) and silica gel have been
widely investigated for adsorption refrigeration and CO2 capture [6,7].
Several novel materials e.g. metal organic framework (MOF) have once
aroused burgeoning attentions due to large adsorption capacity and
high gas selectivity [8]. Nevertheless, the cost is correspondingly higher
than that of other classical materials. Comprehensively considering
cost, adsorption capacity and thermal stability, AC is one of the most
suitable aspirants for CO2 capture, which is inexpensive and insensitive
to moisture with a high surface area [9]. Adsorption isotherm curve and
reaction heat of AC have been ensured by various researchers [10,11].
The clear thermal properties are quite helpful to understand adsorption
phenomenon, which could be used for system design and optimization
of CO2 capture. Except for selection of adsorbent, different operation
methods i.e. thermal adsorption cycles also determine the performance
of CO2 capture.

Through the variation of temperature or pressure, approaches to
adsorption CO2 capture could be classified into pressure swing ad-
sorption (PSA) and temperature swing adsorption (TSA). PSA operates
adsorption process at a pressure higher than atmosphere value while
vacuum swing adsorption (VSA) is defined when adsorption process
proceeds at atmospheric pressure and desorption happens under a low
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Nomenclature

Activated carbon AC
CCS carbon capture and storage
E exergy (kJ)
H reaction heat (kJ−1·kg−1)
MOF metal organic framework
m mass (kg)
P pressure (Pa)
PSA pressure swing adsorption
Q heat (kJ)
q CO2 adsorption capacity (kg−1·kg−1)
Re recovery
T temperature (°C)
TSA temperature swing adsorption
VSA vacuum swing adsorption
W work (kJ−1·kg−1)
WC working capacity (kg−1·kg−1)
y CO2 concentration

Greek letters

η efficiency

ψ percentage

Subscripts

ad adsorption
CO2 carbon dioxide
c cooling
con condensation
de desorption
ex exergy
H high temperature
h heating
hr heat recovery
i ideal
L latent heat
l low temperature
max maximum
min minimum
r real
re reactor
S shaft work
s sensible
sat saturation
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Fig. 1. Schematic diagram for 4-step TSA cycle (a) process schematic; (b) adsorption isotherm diagram.

L. Jiang et al. Energy Conversion and Management 165 (2018) 396–404

397



Download English Version:

https://daneshyari.com/en/article/7158620

Download Persian Version:

https://daneshyari.com/article/7158620

Daneshyari.com

https://daneshyari.com/en/article/7158620
https://daneshyari.com/article/7158620
https://daneshyari.com

