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Abstract

We present a new method for solving the 3D gravitational potential of a density field on the Yin–Yang grid. Our
algorithm is based on a multipole decomposition and is completely symmetric with respect to the two Yin–Yang
grid patches. It is particularly efficient on distributed-memory machines with a large number of compute tasks,
because the amount of data being explicitly communicated is minimized. All operations are performed on the
original grid without the need for interpolating data onto an auxiliary spherical mesh.
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1. Introduction

Solving for Newtonian gravity in 3D is relevant in a
large number of astrophysical and geophysical problems.
For instance, the propagation of seismic waves on Earth
(Komatitsch & Tromp 2002), the formation of planetesimals in
protoplanetary disks (Simon et al. 2016), shock propagation in
protostellar clouds (Falle et al. 2017), and the formation of the
Earth’s core (Mondal & Korenaga 2018) are 3D situations that
require self-gravity to be taken into account. One example,
which is in the focus of our interest, are core-collapse
supernovae.

The explosion mechanism of core-collapse supernovae is
one of the long-standing riddles in stellar astrophysics. Thanks
to growing supercomputing power, 3D neutrino-hydrody-
namics simulations can now be performed to study the physical
processes responsible for the onset of the explosion with highly
optimized codes on distributed-memory architectures (Takiwaki
et al. 2012, 2014; Lentz et al. 2015; Melson et al. 2015a,
2015b; Roberts et al. 2016; Müller et al. 2017; Ott et al. 2018;
Summa et al. 2018). The Garching group uses the PRO-
METHEUS-VERTEX package (Rampp & Janka 2002), which
extends the finite-volume hydrodynamics module PROMETHEUS
(Fryxell et al. 1989) with a state-of-the-art neutrino transport and
interaction treatment. Its latest code version applies the Yin–
Yang grid (Kageyama & Sato 2004)—a composite spherical
mesh—to discretize the spatial domain.

Until now, self-gravity of the stellar plasma in 3D
simulations has been treated in spherical symmetry on an
averaged density profile in PROMETHEUS, because the
gravitational potential is dominated by the spherical proto-
neutron star in the center. As stellar collapse to neutron stars is
only a mildly relativistic problem, the Garching group applies
Newtonian hydrodynamics but uses a correction of the
monopole of the gravitational potential (Marek et al. 2006),
which has been turned out to yield results that are well
compatible with fully relativistic calculations (Liebendörfer
et al. 2005; Müller et al. 2010). However, as 3D core-collapse
supernova simulations become more elaborate by taking more
and more physical aspects into account, it is highly desirable to
include a realistic 3D gravitational potential to treat large-scale
asymmetries correctly. This holds true, in particular, in cases

where the collapsing star develops a global deformation, e.g.,
due to centrifugal effects in the case of rapid rotation.
Müller & Chan (2018) recently presented a method for

solving Poisson’s equation on spherical polar grids using 3D
Fast Fourier transforms. Although their algorithm yields an
accurate solution of the gravitational potential even for highly
aspherical density configurations, it is currently not available
for the Yin–Yang grid, and its parallel efficiency needs to be
improved to serve our purposes.
In this work, we present a method for efficiently computing

the gravitational potential on the Yin–Yang grid based on the
gravity solver of Müller & Steinmetz (1995). Also, Wong-
wathanarat et al. (2010) applied a 3D gravity solver on Yin–
Yang data; however, their code was not parallelized for
distributed-memory systems. It relied on mapping the data to
an auxiliary spherical polar grid. With our approach presented
here, we compute the gravitational potential on the Yin–Yang
grid directly.
In Section 2, we will briefly summarize the algorithm

developed by Müller & Steinmetz (1995) for 3D spherical
grids. A method for its efficient parallelization will be
discussed in Section 3, followed by a detailed explanation of
the modifications for the Yin–Yang grid in Section 4. Test
calculations will be presented in Section 5.

2. Solving Poisson’s Equation on a Spherical Grid

In this section, we briefly summarize the procedure for
computing the 3D gravitational potential on a spherical polar
grid as shown by Müller & Steinmetz (1995).
Given the density distribution,  ( )r , the gravitational

potential at the location r is determined by solving Poisson’s
equation, which can be expressed in its integral form as
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where G is the gravitational constant, and V denotes the whole
computational domain. In the following, we employ spherical
coordinates and express spatial vectors as r=(r,ϑ,j). A
decomposition of - ¢ -∣ ∣r r 1 into spherical harmonics Yℓm yields
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(Müller & Steinmetz 1995, Equation (8))
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In the latter equation, Cℓm and Dℓm are defined as
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where Yℓm are the complex conjugates of the spherical
harmonics. After inserting their definition and rearranging the
terms, Müller & Steinmetz (1995) wrote the gravitational
potential as a sum of two contributions: one for the
gravitational potential inside a sphere of radius r, F ( )( ) rℓm

in ,

and a second for the potential outside, F ( )( ) rℓm
out ,
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where Pℓ
m are the associated Legendre polynomials. The

integrals for these inner and outer contributions can be
expressed as
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The normalization factor in Equation (5) is given by
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To discretize these equations, we divide the spatial domain
into ´ ´J jn n nR grid cells, each spanning from J j- - -( )r , ,i j k

to J j+ + +( )r , ,i j k with = ¼i n1, , R, = ¼ Jj n1, , , and
= ¼ jk n1, , . The finite-volume method as being used in the

PROMETHEUS code assumes that in each cell, the density is
given as a cell average, i.e.,

 =( ) ( )r , 10ijk

for  - +r r ri i ,  J J J- +
j j , and  j j j- +

k k . This
assumption allows for simplifying Equations (6) and (7),

which can then be written as
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In our chosen coordinates, the gravitational potential is
computed at the cell interfaces. The radial index, nr, introduced
above is equal to the cell index, i, if = +r ri . The two integrals
 ( )

k
m and  ( )

k
m can be evaluated analytically:
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The radial integrals in Equations (11) and (12) can also be
computed directly:
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The remaining integrals in Equations (11) and (12),
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can be evaluated efficiently and analytically, i.e., without
numerical integration errors, using recurrence relations (see the
Appendix).
Solving Equation (5) numerically requires setting an upper

bound for the summation over ℓ, which we denote as ℓmax. We
will discuss the choice of ℓmax below in Section 6.

3. Parallelization of the Method

For efficiently computing the gravitational potential on
distributed-memory systems, it is important to minimize the
amount of data being explicitly exchanged between compute
tasks. The easiest parallel solution of the aforementioned
equations would be to collect the entire density field from all
computing units, calculate the gravitational potential in serial,
and send the result back to all tasks. This, however, would
require a large amount of data being communicated very
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