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A B S T R A C T

For the management of wind energy, wind speed forecasting is often required. Accurate multi-step ahead wind
speed forecasts make the power system be adjusted timely and properly to ensure the stable and efficient op-
eration of power system. Currently, various techniques have been developed for multi-step ahead wind speed
forecasting. However, the correlation among different forecasting steps is often neglected in current multi-step
ahead wind speed forecasting approaches, and the characteristic of heteroscedasticity in wind speed forecasting
errors is usually not taken into consideration. In this work, a novel multi-step ahead forecasting method based on
multi-kernel learning is developed. This method considers the task correlation, which represented by the cov-
ariance of multi-step ahead forecasting tasks, as well as the heteroscedasticity of forecasting errors. The opti-
mization is solved within the framework of variational Bayesian. Thus, a correlation aware multi-step ahead
wind speed forecasting technique with heteroscedastic multi-kernel learning is designed. In this paper, the ex-
perimental results in different wind farms and different seasons prove that the regression model considering the
characteristics of multi-step ahead wind speed forecasting, task correlation and heteroscedasticity, will produce
more accurate forecasts than the other models as for two to six-ahead wind speed forecasting. However, it is
difficult to tell which characteristic is more important from the forecasting results. So, the regression model
considering both of them will be more reasonable. Moreover, the training time of the proposed model is more
than 10min but less than 20min. Thus, two to six-step ahead wind speed forecasts can be used in some practical
applications, such as the load dispatch planning and the load increment/decrement decisions.

1. Introduction

Since the 21st century, demands for energy have rapidly increased
with the development of economy, and energy industry is growing fast.
Wind energy has extracted more and more attention in recent years.
However, as the proportion of wind power in the whole electricity
supply increases constantly, the corresponding drawbacks have gradu-
ally emerged. The random fluctuation and intermittence characters of
nature wind result in the unstable wind power. Large wind disturbance
will cause voltage and frequency fluctuations. More seriously, the
whole power system will lose stability [1].

Wind power forecasting is the premise for the stable development of
wind power industry. Accurate wind power forecasts will help adjust
the power dispatching plans in time, which will reduce the adverse
impact of wind power on the power grid and improve the operation
benefit of wind farms in the meanwhile. Before getting the wind power
forecasts, wind speed forecasts are required [2]. Lots of wind speed

forecasting models have been designed, but no general wind speed
forecasting model can be applied to all wind regimes. Generally, they
can be grouped into three categories: physical models, statistical
methods and hybrid models [3].

Physical models can infer the final forecasted wind speed by phy-
sical equations when given the physical information and the outputs of
numerical weather prediction (NWP) models [4,5]. Unlike the physical
models, statistical models only utilize the historical wind speed data.
The typical statistical models contain autoregressive (AR) model [6],
autoregressive moving average (ARMA) model [7] and autoregressive
integrated moving average (ARIMA) model [8]. Some variants, such as
fractional-ARIMA and Hammerstein autoregressive, are also proposed
to forecast wind speed [9,10].

The conventional statistical approaches just show the linear re-
lationship between the historical wind speed and the forecasted wind
speed. Many researchers turn to employ machine learning-based sta-
tistical methods, such as artificial neural networks (ANNs) [11],
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support vector machine (SVM) [12], Gaussian Process (GP) [13] and
extreme learning machine (ELM) [14], to capture the nonlinear pat-
terns hidden in wind speed data. Recently, some deep neural networks,
including long short-term memory network (LSTM), begin to be applied
in wind speed forecasting, and promising results are derived [4,15,16].
However, the structures of those ANNs play important roles in the final
wind speed forecasting results [17], and ANNs often have the risk of
local minima and over-fitting [18]. To overcome the above problems,
some kernel-based nonlinear regression models such as SVM and GP are
used [12,13]. However, their model parameters, including kernel
parameter and regularization parameter, have great effects on the
forecasting performance [19]. Though it takes less time to train an ELM
than to train a SVM or GP, its forecasts are somewhat random due to the
random assignment of its weights. Deep neural networks own strong
fitting capabilities because the existence of a large number of para-
meters in the model. However, similar to ANNs, it is also hard to de-
termine optimal structures for deep neural networks, more parameters
need to be tuned, which will takes us much time.

The conventional statistical forecasting methods and the machine
learning-based forecasting methods can model linear and nonlinear
patterns hidden in wind speed times series, respectively. Naturally,
hybrid models can be constructed by combining both of them to per-
form wind speed forecasting [20,21]. Results in [20,21] showed that
the hybrid models outperformed single forecasting models. Another
hybrid model integrates some algorithms, including signal processing
and intelligent optimization algorithms, to enhance the forecasting
capability of single forecasting models [22]. For instance, in [23], en-
semble empirical mode decomposition (EEMD) was employed to pre-
process the original wind speed data to reduce the adverse effects of

noise and outliers on the final forecasting models, and genetic algo-
rithm (GA) was used to tune the parameters in the wind speed fore-
casting model at the same time.

Recently, some new characteristics are discovered when conducting
wind speed forecasting. Researchers turn to design new forecasting
models based on these new characteristics. It was reported that the
errors of wind speed forecasting didn’t obey Gaussian distribution, but a
Beta distribution [24,25]. Based on this finding, Beta noise based-SVM
and Beta noise based-kernel ridge regression model were derived. The
performances were tested on some real tasks [24,25]. Besides, hetero-
scedasticity is also observed in wind speed forecasting [26,27]. Con-
sidering this property, heteroscedastic support vector regression and
heteroscedastic Gaussian process were developed in [26,27], respec-
tively.

In this work, we focus on developing a multi-step ahead forecasting
model based on the characteristics of wind speed forecasting. When
conducting multi-step ahead forecasting, there are three commonly
used strategies: iterated strategy, direct strategy and multi-output
strategy [28]. For the iterated strategy, one-step ahead forecast is used
as input to obtain the forecast in the following step [28]. Thus, it may
suffer from the accumulated errors because the input variables include
forecasts, rather than real observations [29]. As to the direct strategy,
multi-step ahead forecasting is realized by adopting forecasting models
to obtain each step ahead forecasts independently. It prevents those
forecasting models with direct strategy from considering the de-
pendency among different steps ahead forecasting tasks [28,29]. To
overcome the above shortcomings, multi-output forecasting models
were proposed, including neural networks [30], multi-output support
vector regression (MSVR) [31] and Bayesian multiple kernel learning

Abbreviations

Acronyms

AR autoregressive model
ARMA autoregressive and moving average model
ARIMA autoregressive integrated moving average model
ANNs artificial neural networks
BPNN BP neural network
BMKLMOR Bayesian multiple kernel learning for multi-output re-

gression
C-MKL a variant of CH-MKL when σi is same with each other
CH-MKL heteroscedastic multi-kernel learning based correlation-

aware multi-output regression
EEMD ensemble empirical mode decomposition
Elman Elman neural network
ELM extreme learning machine
GP Gaussian Process
GA genetic algorithm
H-MKL a variant of CH-MKL when = IΛ H

LSSVM least squares support vector machine
LSTM long short-term memory neural network
MAE mean absolute error
MAPE mean absolute percentage error
MSVR multi-output support vector regression
NWP numerical weather prediction
PDF probability density function
RMSE root mean square error
SVM support vector regression
VB variational Bayesian

Symbols

(·)N Gaussian distribution

(·)MN matrix-variate Gaussian distribution
(·)IG inverse Gamma distribution

(·)G Gamma distribution
(·)IW inverse-Wishart distribution

G H, number of kernels and forecasting tasks
N M, length of training set and dimension of V
β weight vector of kernels
α regression coefficient matrix
Y X E, , the target, input and error matrices
M S Ω, , the mean, row and column covariance of X
Kβ the sum of multiple kernel matrices
Im ×m m( ) identity matrix
Ξ Λ, the row covariance of E , the column covariance of Y

S EΩ , ,α α α the parameters of α ’s posterior distribution
S EΩ , ,Z Z Z the parameters of Z ’s posterior distribution
S EΩ , ,V V V the parameters of V ’s posterior distribution

μ Σ,β β, the parameters of β’s posterior distribution
a b,new

i
new
i two parameters of σi’s posterior distribution

c d,new
g

new
g two parameters of ηg’s posterior distribution

e f,new new the parameters of γ ’s posterior distribution
g h,new new the parameters of τ ’s posterior distribution

νΨ ,new new the scale matrix and the degree of freedom of Ω’s posterior
distribution

Δ the estimated task correlation by CH-MKL
a b,0 0 the initialized parameters of a b,new

i
new
i

c d,0 0 the initialized parameters of c d,new
g

new
g

e f,0 0 the initialized parameters of e f,new new
g h,0 0 the initialized parameters of g h,new new

νΨ ,0 0 the initialized parameters of νΨ ,new new

V Z,0 0 the initialized matrices of V and Z
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