
EISEVIER

Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

A real-time capable quasi-2D proton exchange membrane fuel cell model

Dominik Murschenhofer^{a,b,*,1}, Dominik Kuzdas^{a,b,1}, Stefan Braun^a, Stefan Jakubek^c

- a Institute of Fluid Mechanics and Heat Transfer, TU Wien, Tower BA/E322, Getreidemarkt 9, 1060 Vienna, Austria
- b Christian Doppler Laboratory for Innovative Control and Monitoring of Automotive Powertrain Systems, TU Wien, Tower BA/E325, Getreidemarkt 9, 1060 Vienna,
- ^c Institute of Mechanics and Mechatronics, TU Wien, Tower BA/E325, Getreidemarkt 9, 1060 Vienna, Austria

ARTICLE INFO

Keywords: Proton exchange membrane fuel cell Real-time capability Dynamic fuel cell model Spectral methods Linearization scheme

ABSTRACT

In this paper a dynamic proton exchange membrane fuel cell model for real-time applications is presented. Following a quasi-2D approach, effects such as multicomponent diffusion in porous layers, membrane water transport driven by diffusion and electro-osmotic drag as well as membrane nitrogen crossover forced by partial pressure differences, are considered. A linearisation of the governing equations with respect to the previous time step is applied to avoid numerically expensive Newton iterations and to speed up the simulation. Furthermore, a solution method based on Chebyshev collocation minimises the required number of nodes and assures real-time capability. The model is validated in terms of polarisation curves, current density and species distribution versus steady-state computational fluid dynamics simulations of a 3D fuel cell performed in AVL Fire™. The transient behaviour is found to be in good qualitative agreement with results published by other authors. Due to the fast computation capability of the presented model, it is suitable for widespread parameter studies, control unit adjustments or state predictions, e.g. fuel starvation or membrane drying and flooding.

Generally, bold faces and superscript tilde denotes vector and dimensional quantities, respectively.

1. Introduction

Proton exchange membrane fuel cells (PEMFCs) are a promising alternative power source for mobile and stationary devices. Low operating noise, the relative simplicity due to no moving parts, zero emission of greenhouse gases and a high energy density combined with high efficiency are the main advantages. In recent decades, fundamental knowledge about fuel cell (FC) operating conditions has been gained by studying both experimental and computer simulation results. However, dynamic operation of a FC is still very challenging and the issue of reduced durability and performance occurring from unmeant destructive states is hardly tackled successfully. State-of-the-art FCs are coupled to a battery to bridge dynamic load changes and achieve almost steady working conditions. Transient operation is of high interest for next generation FCs to avoid the battery's costs and weight. Therefore, real-time control will be essential to prevent local destructive states and maintain high efficiency. To this end, a FC model based on physical grounds is desirable for affordable testing, control unit adjustment, online monitoring and to perform widespread parameter studies with a

minimum of computation time.

The first FC models were presented by Bernardi and Verbrugge [1] and Springer et al. [2] in the early 1990s. These models describe 1D mass transfer in the membrane direction and consider steady-state operation only. Springer et al. [2] introduced a model for the water transport across the membrane which partly is still used nowadays. A quasi-2D approach - coupling a 1D gas channel model with a 1D model for mass transport through the membrane electrode assembly - which is suitable to describe spatial variations of current density, water distribution and membrane ohmic resistance was presented by Dannenberg et al. [3]. This quasi-2D description was further used by many other authors [4-6]. While Berg et al. [4] presented a new approach to couple gas diffusion layers (GDLs) with the membrane considering nonequilibrium effects, Freunberger [5] and Kulikovsky [6] assumed equilibrium between the membrane water content and the GDL water vapour activity at the corresponding interface [2]. Similar to the quasi-2D approach, Tavčar and Katrašnik [7,8] presented a model designed for fast state prediction based on a quasi-3D computation domain, composed of a 1D model for the gas channels and a superimposed 2D model for the GDL and membrane assembly perpendicular to the gas channel flow direction. By assuming potential flow inside the GDL an analytical 2D solution, reducing the computational effort drastically, is

^{*} Corresponding author at: Institute of Fluid Mechanics and Heat Transfer, TU Wien, Tower BA/E322, Getreidemarkt 9, 1060 Vienna, Austria. E-mail address: dominik.murschenhofer@tuwien.ac.at (D. Murschenhofer).

¹ These authors contributed equally to this work.

Nomenclature \tilde{u} velocity [m s⁻¹] $\widetilde{u}_{\mathrm{in}}$ inlet velocity [m s⁻¹] \widetilde{u}_{α} \widetilde{W} species velocity [m s⁻¹] Latin symbols width of channel, GDL, membrane [m] $\widetilde{a}_c\widetilde{L}_c$ electrode roughness, meaning catalyst surface area per electrode geometric area [-] Greek symbols water vapour activity [-] $a_{\rm w}$ electro-osmotic drag coefficient in the membrane [-] catalyst layer transfer coefficient [-] $C_{\rm drag}$ $\alpha_{\rm c}$ $\widetilde{\mathcal{D}}_{\mathrm{H}}$ $\widetilde{D}_{\mathrm{W}}$ gas phase volume fraction in porous media [-] binary diffusion coefficient [m² s] pressure dependency factor for electrochemical reaction hvdraulic diameter [m] $\gamma_{\rm c}$ water diffusion coefficient in the membrane [m² s⁻¹] e_1 \widetilde{E}_{act} \widetilde{E}_{cell} \widetilde{E}_{OC} $\widetilde{\kappa}_{\scriptscriptstyle \rm I}$ through-plane hydraulic permeability [m²] unit vector in x_1 -direction [–] $\widetilde{\kappa}_{\parallel}$ in-plane hydraulic permeability [m²] activation energy for O₂ reduction on platinum [J mol⁻¹] λ normalised membrane water content [-] cell potential [V] $\widetilde{\mu}$ dynamic viscosity [Pas] open-circuit potential [V] €W $\widetilde{\rho}$ density [kg m⁻³] equivalent weight of the dry membrane [kg mol⁻¹] . ≈ membrane ionic conductivity [S m⁻¹] \widetilde{F} Faraday constant, 96485.3365 C mol⁻¹ $\widetilde{\tau}_{\mathrm{w}}$ wall shear stress [N m⁻²] $f_{1,2}$ F_{c} fitting parameters for PEM ionic conductivity [-] mass fraction [-] ξ hydraulic diameter correction factor [-] f_{D} F_{u} \widetilde{H} \widetilde{i} \widetilde{i}_{0} \widetilde{j} \widetilde{j} tot Darcy-Weisbach friction factor [-] Subscripts and superscripts shape factor [-] height of channel, GDL, membrane [m] reaction current density [A m⁻²] anode exchange current density [A m-2] C cathode diffusive species flux $\lceil \log m^{-2} s^{-1} \rceil$ reference value T total species flux [kg m⁻² s⁻¹] transposed vector K_{1-6} dimensionless group [-] dimensionless group [-] Abbreviations $K_{\rm e}$ \widetilde{k}_{N_2} nitrogen permeance in the PEM $[mol(s m Pa)^{-1}]$ CFD computational fluid dynamics \widetilde{L} PEMFC length [m] FC fuel cell M molar mass [kg mol⁻¹] GC gas channel \widetilde{p} pressure [Pa] GDL gas diffusion layer ambient pressure [Pa] hydrogen H_2 saturation pressure [Pa] H_2O water Bruggeman exponent [-] \widetilde{R} LIT linearisation in time universal gas constant, 8.314 J (mol K)⁻¹ N_2 nitrogen RH relative humidity at channel inlet [-] O_2 oxvgen $S_{m,u,s}$ source terms for conservation of mass, momentum and PDE partial differential equation species, respectively PEM proton exchange membrane \widetilde{T} temperature [K] **PEMFC** proton exchange membrane fuel cell $\widetilde{T}_{\text{cell}}$ cell temperature [K] SL slice \tilde{t} time [s] $\Delta \widetilde{t}$ time step [s]

obtained for the flow field. Even though the presented models highly improved the understanding of the FCs' behaviour, transient phenomena need to be considered for control applications.

A dynamic quasi-3D PEMFC model was presented by Kang [9], neglecting parallel diffusion fluxes in the GDL and the electrolyte, and using different numbers of control volumes to resolve mass and energy transport. The application of a two-phase water transport model through the GDL allowed to investigate the influence of liquid water formation on the FC's performance, by comparing the results of the twophase model with those of a previously developed one-phase model. Gao and Bessler [10] proposed a transient 2D FC model, replacing Springer et al.'s piecewise form of the membrane water sorption isotherm by a continous expression and using transport equations in the channels and the GDLs. Their model also captures electrochemical kinetics of the oxygen reduction reaction and is, in a subsequent work [11], used for an electrochemical impedance analysis. Nyquist plots for different inlet gas humidities and membrane thicknesses are presented for co- and counter-flow configurations. Next to online monitoring, the investigation of varied impedance spectra may be of interest to enhance the FC's durability as it is a promising method for state of health

observations. Another transient 2D PEMFC model following Springer's coupling approach and using pure oxygen (O2) and hydrogen (H2) as feed gases on cathode and anode side, respectively, was presented by Wu et al. [12]. They developed their work further to treat non-isothermal transient 3D-effects [13] and analysed the dynamic influence of Springer's equilibrium and Berg's non-equilibrium coupling methods between GDLs and the membrane. However, as their fuel cell is fed with pure O2, phenomena related to the presence of nitrogen (N2), as multicomponent diffusion, N2 membrane crossover and material properties depending on the N2 distribution have not been taken into account. Wang and Wang [14] presented a dynamical 3D model and studied the importance of various physical effects, such as membrane hydration, GDL species transport due to diffusion and convective gas transport in the gas channels, by considering the relevant time scales. The FC model is operated with humidified O2 and H2 and therefore only accounts for binary diffusion between fuel gas and water. Assuming isothermal cell conditions, transient simulations have been performed by using a commercial computational fluid dynamics (CFD) software. They analysed the dynamic response to step changes of cell potential and cathode inlet humidification. In their subsequent work [15], the model

Download English Version:

https://daneshyari.com/en/article/7158906

Download Persian Version:

https://daneshyari.com/article/7158906

<u>Daneshyari.com</u>