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A B S T R A C T

The kinetics of microalgae pyrolysis is investigated to analyze the thermal degradation of carbohydrates, pro-
teins and lipids in different species of microalgae. The pyrolysis processes of microalgae Chlorella vulgaris ESP-31,
Nannochloropsis oceanica CY2, and Chlamydomonas sp. JSC4 are examined by thermogravimetric analysis (TGA),
and independent parallel reaction (IPR) model is adopted to approach the pyrolysis kinetics. To maximize the fit
quality between the established kinetic models and experimental data, particle swarm optimization (PSO), a
kind of evolutionary computation, is employed. The thermal degradation characteristics of the three microalgal
species are compared with each other. The results suggest that the thermal degradation curves of the three
microalgae can be predicted with a fit quality of at least 97.9%. The activation energies of carbohydrates,
proteins, and lipids in the microalgae are in the ranges of 53.28–53.30, 142.61–188.35, and
40.21–59.23 kJmol−1, respectively, while the thermal degradation of carbohydrates, proteins, and lipids are in
temperature ranges of 164–497, 209–309, and 200–635 °C, respectively. It is proved in this work that the IPR
model and the calculation of the PSO can be used to predict the pyrolysis kinetics of microalgae to a good level of
fitness.

1. Introduction

Renewable energy sources are becoming more and more important
as alternatives to fossil fuels. Bioenergy is one of the largest parts of
renewable energy. Different types of materials have been investigated
as biomass resources, including microalgae, crop residues, manure, and
lignocellulosic biomass [1,2]. Many routes for utilizing biomass have
been developed to produce different phases of biofuel, including gasi-
fication, liquefaction, carbonization, and pyrolysis. Among these, pyr-
olysis, which is applied to remove the volatile matter of biomass under
an atmosphere without oxygen, is considered as a fundamental process,
and it is thus important to study the characteristics of related reactions
and products [3]. Thermogravimetric analysis (TGA) has become the
most widespread technique to achieve this, due to its advantage in
identifying the weight and temperature of the samples continuously
and precisely. Furthermore, the data from TGA could be used to obtain
derivative thermogravimetric (DTG) analysis to inspect the degradation
behavior of biomass in a thermal conversion process.

Microalgae have been applied as a promising biomass feedstock,
because of their wide distribution, high growth rates, and less

competition with terrestrial crops in cultivated land [4,5]. Microalgae
are microorganisms that can perform photosynthesis at high efficiency,
which means they can capture CO2 from the atmosphere and even faster
than terrestrial plants [6]. Generally, there are three main components
in microalgae: carbohydrates, proteins, and lipids. Depending on the
species of microalgae, the mass contents of these main components and
other elements are different, which means the characteristic of the
biofuel produced by microalgae would be affected by the species used.
Additionally, microalgae are considered to have a high potential to take
the place of fossil fuels for power generation and transportation, thus
reducing CO2 emissions [7]. Pyrolysis and thermochemical liquefaction
are the most technically practical methods for the conversion of algal
biomass-to-biofuels, after the extraction of oils from algae [8].

Accurate kinetic models are needed to investigate the details of
thermal decomposition processes. Such models are practical tools to
predict not only the biomass pyrolysis, but also the torrefaction process,
which can be used to describe the mass loss of the components during
the conversion process using calculations [9]. Due to the adoption of
the Arrhenius equation, the activation energy (Ea) and the pre-ex-
ponential factor (A) are two important parameters to build models for
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non-isothermal conversion. Many kinds of models have been developed
and applied to establish the kinetics of pyrolysis, including single-step
model [10], multiple parallel reaction model [11], sectional approach
model [12], distributed activation energy model (DAEM) [13], and so
on. However, if a precise result is needed then a single-step model is not
recommended due to its simplicity [11], and thus a multiple parallel
reaction model is selected in this study. Research has shown that such a
model could build a simulated DTG curve that perfectly coincided with
the experimental one [11]. It has also been proven that the pyrolysis
kinetics of microalgae could be simulated by multiple pseudo-compo-
nents models [14].

Evolutionary computation (EC) is a well-known technique applied
to design, simulate, and solve optimization problems. The concept of EC
is based on the mechanism of natural evolution. Compared with tra-
ditional algorithms, EC can solve optimization problems with more
parameters due to its characteristic based on particle numbers. The
execution steps with EC can generally be divided into three parts: (1)
identify the expressing form of the target problem; (2) select the
method to calculate the fitness value of the particles to target problem;
(3) define the appropriate selection and variation operators [15]. Var-
ious kinds of EC have been developed, such as the genetic algorithm
(GA), differential evolution (DE), ant colony optimization (ACO), and
particle swarm optimization (PSO). As described earlier, the pyrolysis
reaction of biomass is fairly complicated, and thus EC is a potential tool
to solve the large number of parameters involved in pyrolysis kinetics.
Different types of EC have been applied in the field of pyrolysis kinetics
for different materials [16–19].

TGA has been extensively performed to figure out the thermal

degradation characteristics of microalgae. In general, carbohydrates
and proteins are thermally decomposed at lower temperatures, whereas
lipids have higher degradation temperatures. However, it appears that
the thermal degradation temperatures of the three constituents in mi-
croalgae have not been defined completely. Particle swarm optimiza-
tion (PSO), a kind of EC, is a technique that finds the optimal solution
by comparing the empirical position of each particle with regard to a
fitness value. PSO was first proposed by Kennedy and Eberhart in 1995
[20], and the mechanism is based on the social behaviors of the groups
of animals, assuming each particle has the abilities of memory and
sharing knowledge [21], such as the flocking process of birds [22]. PSO
has the merits of low CPU and memory demands, and the program can
be simply implemented [22]. To the best of the authors’ knowledge,
PSO has not been applied in the field of pyrolysis kinetics, and is thus
employed to construct the pyrolysis kinetics of microalgae in the pre-
sent work. The application of PSO [22–26] is shown in Table 1. In this
study, the pyrolysis kinetics of three different microalgae are evaluated.
Based on the obtained results, the thermal decomposition temperatures
of carbohydrates, proteins, and lipids are analyzed to provide useful
information for the pyrolysis of microalgae.

2. Methods

2.1. Materials

Three different microalgae, including Chlorella vulgaris ESP-31 (C.
vulgaris ESP-31), Nannochloropsis oceanica CY2 (N. oceanica CY2), and
Chlamydomonas sp. JSC4 (C. sp. JSC4), were chosen as feedstocks in this

Nomenclature

α conversion degree
A pre-exponential factor (s−1)
Ea activation energy (kJmol−1)
R the universal gas constant (=8.314 J K−1 mol−1)
T absolute temperature (K)
mi the mass at initial temperature (mg)
mT the mass at given temperature (mg)
mf the mass at final temperature (mg)
β the heating rate (°C s−1)
ci the mass fraction of each composition
N the number of the components
OBJ objective function

( )dα
dT exp i,

the conversion rate of the experiment (°C−1)

( )dα
dT cal i,

the conversion rate of the calculation (°C−1)

vi the velocity of the i-th particle
xi the position of the i-th particle
Nvar the number of variables
k the number of iterations
β α,c c the momentum constant
φ1 the cognitive learning rate
φ2 the social learning rate
rand () random number
pbesti the best position of the i-th particle
gbest the global best position
Nparticle the number of particles

Table 1
Applications of PSO.

Method Application Fields Equation Target Reference
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→
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Resistance to weight ratio [23]
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(χ is the constriction factor.)

PSO Distribution systems with wind
turbine generators
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Minimized power losses [24]
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(w is the inertia weight which is normally in the range of 0–1)

PSO-ICA Optimal reactive power dispatch → = → + −→ + −→+
v w v φ rand pbest x φ rand gbest x() ( ) () ( )ij
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Minimized power losses and
voltage distribution

[25]
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( j is the dimension of the particle, C is the constriction factor.)
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