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A B S T R A C T

The goal of this study was to model Germany’s 3D wind resource using the wind speed-wind shear model
(WSWS) on a high spatial resolution grid (200m×200m). The model is based on near-surface wind speed data
and reanalysis wind speed data. Furthermore, terrain and land use features were used to develop predictor
variables for statistical mapping of study area-wide WSWS parameters. This enables the continuous assessment
of the meteorological potential between 10m and 200m above ground level. The application of different wind
turbine-specific power curves allowed the estimation of the technical potential in the range of common hub
heights. Based on the estimates of the meteorological and technical potential, the area which is suitable for wind
turbine installation (capacity factor > 0.20) was quantified. It was found that the installation of wind turbines is
feasible between 6.6% (hub height of 74m) and 78.9% (hub height of 169m) of the study area, depending on
wind turbine type. It is assumed that the high spatial resolution modeling improves the assessment of Germany’s
wind resource from local to the national scale. Since the 3D parameterization of WSWS is based on freely
available data, the applied methodology is highly portable and can be transferred to other areas around the
world.

1. Introduction

Wind turbines are used to convert the kinetic energy contained in
the wind first into mechanical and then into electrical energy [1].
Nowadays, wind turbine technology is considered to be matured and
the costs of wind energy are low [2]. In many countries, wind energy
has the potential to cover large amounts of the current and future
electricity demand [3]. From 2001 to 2016, the accumulated globally
installed wind power capacity already increased by 2037% from
23,900MW to 486,790MW [4]. In 2016, the largest wind energy ca-
pacity was installed in China (168,690MW), the USA (82,184MW), and
Germany (50,018MW) [4]. And still great efforts are being made for
further expanding wind energy to reach the goals of the Paris climate
agreement by reducing CO2 emissions through substitution of conven-
tional energies by renewable energies.

Prior to the installation of new wind turbines, the suitability of an
area for utilizing wind energy is assessed by the wind energy potential.
It is typically divided into five categories [5]: meteorological potential,
geographical potential, technical potential, economic potential, and
implementation potential. Out of these potentials, the meteorological
potential is the fundamental basis for planning wind turbine projects. It
sets the stage for calculating all other potentials. An accurate assess-
ment of the meteorological potential will consequently lead to more
concise estimates of the geographical, technical, economic, and

implementation potentials. However, the wind resource strongly varies
in the 3D space, especially in orographically complex terrain. Further-
more, the low number of wind speed measurement stations in most
areas of the world is insufficient to represent the wind speed regimes in-
between measurement stations. Thus, one common approach for mod-
eling the wind resource in-between measurement stations is the appli-
cation of statistical airflow models, which estimate near-surface wind
speed (U) based on the spatial correlation between measured wind
speed and environmental factors. Since the application of statistical
airflow models is time efficient and computationally efficient, it allows
for an immediate evaluation of model accuracy [6]. Furthermore, sta-
tistical airflow models are applicable at very high spatial resolutions
[7].

The main steps in the development of statistical airflow models are
[8]: (1) preparation of measured wind speed time series including
homogenization, detrending, and measurement height correction, (2)
calculation of statistically meaningful U values (e.g. mean, median, or
distribution parameters), (3) mapping of environmental factors that
potentially influence near-surface airflow, (4) model building by
linking airflow characteristics to environmental factors, and (5) appli-
cation of the statistical model in the study area.

In a number of previous studies, wind resource assessment was
based on mapping average wind speed. For example, simple kriging was
used to produce a map of annual mean wind speed in the Netherlands at
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10m above ground level (a.g.l.) based on wind speed measurements
and roughness information [9]. The statistical wind field model of the
German Meteorological Service was built by applying multiple regres-
sion techniques that require the use of terrain and land use features as
predictor variables [10]. However, maps of average wind speed or

average wind power density describe only central tendencies of wind
speed distributions. A more precise wind resource assessment can be
achieved by mapping the parameters of wind speed distributions.
Therefore, the ensemble learning method Random Forests was used to
estimate Weibull parameters of wind speed distributions on a

Nomenclature

Acronyms

a.g.l. above ground level
a.s.l. above sea level
BA Bavaria
BB Brandenburg
BE Berlin
BR Bremen
BW Baden-Württemberg
C1 case one: U1000m ≤ 9.0m/s
C2 case two: U1000m > 9.0m/s
cdf cumulative distribution function
D four parameter Dagum distribution
DA data availability
DS1 parameterization dataset
DS2 validation dataset
ecdf empirical cumulative distribution function
HA Hamburg
HE Hesse
JSB four parameter Johnson SB distribution
L grid cell
LS Lower Saxony
LSE least-squares estimation method
MOM moment method
MV Mecklenburg-Vorpommern
NRW North Rhine-Westphalia
PC1 power curve for Enercon E101-E2-3.5
PC2 power curve for Senvion 3.2M-122 NES
PC3 power curve for General Electric GE Wind 2.5
PC4 power curve for Vestas V112-3.45
PC5 power curve for Nordex N117 3.6
PC6 power curve for Enercon E141-4.2
pdf probability density function
RP Rhineland-Palatinate
SA Saxony
SAA Saxony-Anhalt
SH Schleswig-Holstein
SL Saarland
TH Thuringia
WSWS wind speed-wind shear model

Symbols

η aspect (deg)
ψ absolute elevation (m)
∼E median power law exponent
∼U median of daily mean wind speed (m/s)
U average of daily mean wind speed (m/s)
a learning rate
B weak learner
cf capacity factor
E power law exponent
EX percentage number of exceedances (%)
f probability density function
F cumulative distribution function
h height a.g.l. (m)

m model
M total number of weak learners
MAE mean absolute error (m/s)
MSE mean squared error (m/s)
PW wind turbine power output (W)
PW(U) wind turbine power curve (W)
R2 coefficient of determination
RMSE root mean square error (m/s)
u zonal wind vector component (m/s)
U wind speed (m/s)
v meridional wind vector component (m/s)
WTA wind turbine area (km2)
X predictor variable
Y target variable

̂Y prediction of target variable
z0 roughness length (m)
α first Dagum shape parameter
β Dagum scale parameter
γ first Johnson SB shape parameter
δ second Johnson SB shape parameter
ε second Dagum shape parameter
λ Johnson SB scale parameter
μ Dagum location parameter
ρ copula parameter
ξ Johnson SB location parameter
τ orographic sheltering (deg)
φ curvature (deg)
Φ relative elevation (m)

Subscripts

1 case one: U1000m ≤ 9.0m/s
1000 m 1000m a.g.l.
100m 100m a.g.l.
10m 10m a.g.l.
160m 160m a.g.l.
2 case two: U1000m > 9.0m/s
60m 60m a.g.l.
ar area
C copula
ci cut-in
co cut-out
dir direction
g near surface
h height
hub wind turbine hub
i pressure level
JSB Johnson SB
k radius
l local
p population
pred prediction
q accounting for C1 and C2
r rated output
z index of predictor variable combination
zz index of averaged predictor variable combination
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