Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

3D statistical mapping of Germany's wind resource using WSWS

Christopher Jung*, Dirk Schindler

Environmental Meteorology, Albert-Ludwigs-University of Freiburg, Werthmannstrasse 10, D-79085 Freiburg, Germany

ARTICLE INFO

Keywords: Wind energy Wind shear Power law LS-boost Wind resource assessment Meteorological potential

ABSTRACT

The goal of this study was to model Germany's 3D wind resource using the wind speed-wind shear model (WSWS) on a high spatial resolution grid (200 m \times 200 m). The model is based on near-surface wind speed data and reanalysis wind speed data. Furthermore, terrain and land use features were used to develop predictor variables for statistical mapping of study area-wide WSWS parameters. This enables the continuous assessment of the meteorological potential between 10 m and 200 m above ground level. The application of different wind turbine-specific power curves allowed the estimation of the technical potential in the range of common hub heights. Based on the estimates of the meteorological and technical potential, the area which is suitable for wind turbine installation (capacity factor > 0.20) was quantified. It was found that the installation of wind turbines is feasible between 6.6% (hub height of 74 m) and 78.9% (hub height of 169 m) of the study area, depending on wind turbine type. It is assumed that the high spatial resolution modeling improves the assessment of Germany's wind resource from local to the national scale. Since the 3D parameterization of WSWS is based on freely available data, the applied methodology is highly portable and can be transferred to other areas around the world.

1. Introduction

Wind turbines are used to convert the kinetic energy contained in the wind first into mechanical and then into electrical energy [1]. Nowadays, wind turbine technology is considered to be matured and the costs of wind energy are low [2]. In many countries, wind energy has the potential to cover large amounts of the current and future electricity demand [3]. From 2001 to 2016, the accumulated globally installed wind power capacity already increased by 2037% from 23,900 MW to 486,790 MW [4]. In 2016, the largest wind energy capacity was installed in China (168,690 MW), the USA (82,184 MW), and Germany (50,018 MW) [4]. And still great efforts are being made for further expanding wind energy to reach the goals of the Paris climate agreement by reducing CO_2 emissions through substitution of conventional energies by renewable energies.

Prior to the installation of new wind turbines, the suitability of an area for utilizing wind energy is assessed by the wind energy potential. It is typically divided into five categories [5]: meteorological potential, geographical potential, technical potential, economic potential, and implementation potential. Out of these potentials, the meteorological potential is the fundamental basis for planning wind turbine projects. It sets the stage for calculating all other potentials. An accurate assessment of the meteorological potential will consequently lead to more concise estimates of the geographical, technical, economic, and

implementation potentials. However, the wind resource strongly varies in the 3D space, especially in orographically complex terrain. Furthermore, the low number of wind speed measurement stations in most areas of the world is insufficient to represent the wind speed regimes inbetween measurement stations. Thus, one common approach for modeling the wind resource in-between measurement stations is the application of statistical airflow models, which estimate near-surface wind speed (U) based on the spatial correlation between measured wind speed and environmental factors. Since the application of statistical airflow models is time efficient and computationally efficient, it allows for an immediate evaluation of model accuracy [6]. Furthermore, statistical airflow models are applicable at very high spatial resolutions [7].

The main steps in the development of statistical airflow models are [8]: (1) preparation of measured wind speed time series including homogenization, detrending, and measurement height correction, (2) calculation of statistically meaningful U values (e.g. mean, median, or distribution parameters), (3) mapping of environmental factors that potentially influence near-surface airflow, (4) model building by linking airflow characteristics to environmental factors, and (5) application of the statistical model in the study area.

In a number of previous studies, wind resource assessment was based on mapping average wind speed. For example, simple kriging was used to produce a map of annual mean wind speed in the Netherlands at

* Corresponding author.

https://doi.org/10.1016/j.enconman.2017.12.095

E-mail address: christopher.jung@mail.unr.uni-freiburg.de (C. Jung).

Received 25 October 2017; Received in revised form 7 December 2017; Accepted 30 December 2017 0196-8904/ © 2018 Elsevier Ltd. All rights reserved.

Nomenc	lature	m	model
		Μ	total number of weak learners
Acronyms	5	MAE	mean absolute error (m/s)
2		MSE	mean squared error (m/s)
a.g.l.	above ground level	P_W	wind turbine power output (W)
a.s.l.	above sea level	$P_{W}(U)$	wind turbine power curve (W)
BA	Bavaria	R^2	coefficient of determination
BB	Brandenburg	RMSE	root mean square error (m/s)
BE	Berlin	и	zonal wind vector component (m/s)
BR	Bremen	U	wind speed (m/s)
BW	Baden-Württemberg	v	meridional wind vector component (m/s)
C1	case one: $U_{1000m} \leq 9.0 \mathrm{m/s}$	WTA	wind turbine area (km^2)
C2	case two: $U_{1000m} > 9.0 \mathrm{m/s}$	X	predictor variable
cdf	cumulative distribution function	Y	target variable
D	four parameter Dagum distribution	$\hat{\hat{Y}}$	prediction of target variable
DA	data availability	zo.	roughness length (m)
DS1	parameterization dataset	<u>α</u>	first Dagum shape parameter
DS2	validation dataset	ß	Dagum scale parameter
ecdf	empirical cumulative distribution function	P V	first Johnson SB shape parameter
HA	Hamburg	8	second Johnson SB shape parameter
HE	Hesse	E	second Dagum shape parameter
JSB	four parameter Johnson SB distribution	λ	Johnson SB scale parameter
I.	orid cell		Dagum location parameter
IS	Lower Sayony	μ 0	conula parameter
LSF	least-squares estimation method	ې بر	Johnson SB location parameter
MOM	moment method	ς τ	orographic sheltering (deg)
MV	Mecklenburg-Vornommern	í M	curvature (deg)
NRW	North Rhine-Westphalia	ϕ	relative elevation (m)
PC1	power curve for Enercon E101-E2-3.5	Ŧ	
101	power curve for Enercon Eror E2 0.0		
PC2	power curve for Senvion 3 2M-122 NFS	Subscript	s
PC2 PC3	power curve for Senvion 3.2M-122 NES	Subscript	S
PC2 PC3 PC4	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112.3 45	Subscript. 1	s case one: $U_{1000m} < 9.0 \mathrm{m/s}$
PC2 PC3 PC4 PC5	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117-3.6	Subscript. 1 1000 m	s case one: $U_{1000m} \le 9.0 \text{m/s}$ 1000 m a g l
PC2 PC3 PC4 PC5 PC6	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon F141-4 2	Subscript: 1 1000 m 100 m	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l
PC2 PC3 PC4 PC5 PC6 pdf	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function	Subscript: 1 1000 m 100 m 10 m	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l
PC2 PC3 PC4 PC5 PC6 pdf RP	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Bhineland-Palatinate	Subscript: 1 1000 m 100 m 10 m 160 m	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l
PC2 PC3 PC4 PC5 PC6 pdf RP SA	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Sayony	Subscript: 1 1000 m 100 m 160 m 2	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} \ge 9.0 \text{ m/s}$
PC2 PC3 PC4 PC5 PC6 pdf RP SA SA A	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt	Subscript: 1 1000 m 100 m 160 m 2 60 m	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SAA	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein	Subscript. 1 1000 m 100 m 10 m 160 m 2 60 m ar	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SH SI	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland	Subscript. 1 1000 m 100 m 10 m 160 m 2 60 m ar C	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area conula
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SAA SH SL TH	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia	Subscript. 1 1000 m 100 m 10 m 2 60 m ar C ci	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SAA SH SL TH WSWS	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model	Subscript. 1 1000 m 100 m 10 m 2 60 m ar C ci ci	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SAA SH SL TH WSWS	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model	Subscript. 1 1000 m 100 m 160 m 2 60 m ar C ci co dir	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SAA SH SL TH WSWS	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model	Subscript: 1 1000 m 100 m 160 m 2 60 m ar C ci co dir g	case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SH SL TH WSWS Symbols	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model	Subscript. 1 1000 m 100 m 100 m 2 60 m ar C ci co dir g b	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface beight
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SH SL TH WSWS Symbols	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model	Subscript. 1 1000 m 100 m 10 m 2 60 m ar C ci co dir g h hub	case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface height wind turbing hub
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SAA SH SL TH WSWS <i>Symbols</i>	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model aspect (deg) absolute elevation (m)	Subscript. 1 100 m 10 m 160 m 2 60 m ar C ci co dir g h hub i	case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface height wind turbine hub pressure level
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SH SL TH WSWS Symbols η ψ \widetilde{F}	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model aspect (deg) absolute elevation (m) median power law exponent	Subscript. 1 1000 m 100 m 10 m 2 60 m ar C ci co dir g h hub i SB	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface height wind turbine hub pressure level Loheon SB
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SAA SH SL TH WSWS Symbols η ψ \tilde{E} $\tilde{\tau}$	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model aspect (deg) absolute elevation (m) median power law exponent median of doily mean wind speed (m/s)	Subscript. 1 1000 m 100 m 10 m 2 60 m ar C ci co dir g h hub i JSB k	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface height wind turbine hub pressure level Johnson SB radius
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SAA SH SL TH WSWS Symbols η ψ \tilde{E} \tilde{U} τ	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model aspect (deg) absolute elevation (m) median power law exponent median of daily mean wind speed (m/s) average of daily mean wind speed (m/s)	Subscript: 1 1000 m 100 m 10 m 2 60 m ar C ci co dir g h hub i JSB k 1	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface height wind turbine hub pressure level Johnson SB radius local
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SAA SH SL TH WSWS Symbols η ψ \tilde{E} \tilde{U} \bar{U}	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Nordex N117 3.6 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model aspect (deg) absolute elevation (m) median power law exponent median of daily mean wind speed (m/s) average of daily mean wind speed (m/s)	Subscript: 1 1000 m 100 m 10 m 2 60 m ar C ci co dir g h hub i JSB k l	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface height wind turbine hub pressure level Johnson SB radius local pomulation
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SH SL TH WSWS Symbols η ψ \tilde{E} \tilde{U} \bar{U} a B	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model aspect (deg) absolute elevation (m) median power law exponent median of daily mean wind speed (m/s) average of daily mean wind speed (m/s) learning rate waak learner	Subscript: 1 1000 m 100 m 10 m 2 60 m ar C ci co dir g h hub i JSB k l P p	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface height wind turbine hub pressure level Johnson SB radius local population prediction
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SH SL TH WSWS Symbols η ψ \widetilde{E} \widetilde{U} \overline{U} a B cf	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model aspect (deg) absolute elevation (m) median power law exponent median of daily mean wind speed (m/s) average of daily mean wind speed (m/s) learning rate weak learner canacity factor	Subscript: 1 1000 m 100 m 10 m 2 60 m ar C ci co dir g h hub i JSB k l P pred C	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface height wind turbine hub pressure level Johnson SB radius local population prediction
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SH SL TH WSWS Symbols η ψ \widetilde{E} \widetilde{U} \overline{U} \overline{U} a B cf F	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model aspect (deg) absolute elevation (m) median power law exponent median of daily mean wind speed (m/s) average of daily mean wind speed (m/s) learning rate weak learner capacity factor power law exponent	Subscript: 1 1000 m 100 m 10 m 2 60 m ar C ci co dir g h hub i JSB k l p pred q r	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface height wind turbine hub pressure level Johnson SB radius local population prediction accounting for C1 and C2 rated output
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SH SL TH WSWS Symbols η ψ \widetilde{E} \widetilde{U} \overline{U} \overline{U} a B cf E E	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model aspect (deg) absolute elevation (m) median power law exponent median of daily mean wind speed (m/s) average of daily mean wind speed (m/s) learning rate weak learner capacity factor power law exponent percentage number of average (06)	Subscript: 1 1000 m 100 m 10 m 2 60 m ar C ci co dir g h hub i JSB k l p pred q r	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface height wind turbine hub pressure level Johnson SB radius local population prediction accounting for C1 and C2 rated output indux of predictor unrights combination
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SH SL TH WSWS Symbols η ψ \widetilde{E} \widetilde{U} \overline{U} \overline{U} a B cf E E EX f	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model aspect (deg) absolute elevation (m) median power law exponent median of daily mean wind speed (m/s) average of daily mean wind speed (m/s) learning rate weak learner capacity factor power law exponent percentage number of exceedances (%) probability density function	Subscript: 1 1000 m 100 m 10 m 2 60 m ar C ci co dir g h hub i JSB k l p pred q r z	case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface height wind turbine hub pressure level Johnson SB radius local population prediction accounting for C1 and C2 rated output index of predictor variable combination
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SH SL TH WSWS Symbols η ψ \widetilde{E} \widetilde{U} \overline{U} \overline{U} a B cf E E EX f F	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model aspect (deg) absolute elevation (m) median power law exponent median of daily mean wind speed (m/s) average of daily mean wind speed (m/s) learning rate weak learner capacity factor power law exponent percentage number of exceedances (%) probability density function aumulative distribution function	Subscript: 1 1000 m 100 m 10 m 2 60 m ar C ci co dir g h hub i JSB k l p pred q r z zz	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface height wind turbine hub pressure level Johnson SB radius local population prediction accounting for C1 and C2 rated output index of predictor variable combination
PC2 PC3 PC4 PC5 PC6 pdf RP SA SAA SH SL TH WSWS Symbols η ψ \widetilde{E} \widetilde{U} \overline{U} \overline{U} a B cf E EX f F	power curve for Senvion 3.2M-122 NES power curve for General Electric GE Wind 2.5 power curve for Vestas V112-3.45 power curve for Enercon E141-4.2 probability density function Rhineland-Palatinate Saxony Saxony-Anhalt Schleswig-Holstein Saarland Thuringia wind speed-wind shear model aspect (deg) absolute elevation (m) median power law exponent median of daily mean wind speed (m/s) average of daily mean wind speed (m/s) learning rate weak learner capacity factor power law exponent percentage number of exceedances (%) probability density function cumulative distribution function heinbt e a l (m)	Subscript: 1 1000 m 100 m 10 m 160 m 2 60 m ar C ci co dir g h hub i JSB k l p pred q r z zz	s case one: $U_{1000m} \le 9.0 \text{ m/s}$ 1000 m a.g.l. 100 m a.g.l. 10 m a.g.l. 160 m a.g.l. case two: $U_{1000m} > 9.0 \text{ m/s}$ 60 m a.g.l. area copula cut-in cut-out direction near surface height wind turbine hub pressure level Johnson SB radius local population prediction accounting for C1 and C2 rated output index of predictor variable combination index of averaged predictor variable combination

10 m above ground level (a.g.l.) based on wind speed measurements and roughness information [9]. The statistical wind field model of the German Meteorological Service was built by applying multiple regression techniques that require the use of terrain and land use features as predictor variables [10]. However, maps of average wind speed or average wind power density describe only central tendencies of wind speed distributions. A more precise wind resource assessment can be achieved by mapping the parameters of wind speed distributions. Therefore, the ensemble learning method Random Forests was used to estimate Weibull parameters of wind speed distributions on a Download English Version:

https://daneshyari.com/en/article/7159063

Download Persian Version:

https://daneshyari.com/article/7159063

Daneshyari.com