Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

Direct synthesis of dimethyl ether from CO_2 hydrogenation over novel hybrid catalysts containing a $Cu-ZnO-ZrO_2$ catalyst admixed with WO_x/Al_2O_3 catalysts: Effects of pore size of Al_2O_3 support and W loading content

Yossapon Suwannapichat^a, Thanapa Numpilai^{a,b}, Narong Chanlek^c, Kajornsak Faungnawakij^d, Metta Chareonpanich^{a,b}, Jumras Limtrakul^e, Thongthai Witoon^{a,b,*}

^a Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

^b NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology and Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand

^c Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand

^d Nanomaterials for Energy and Catalysis Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand

^e Department of Materials Science and Engineering, Institute of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand

ARTICLE INFO

Keywords: CO₂hydrogenation Methanol Dimethyl ether WO_x-Al₂O₃ Hydrogen

ABSTRACT

The present work examines the direct synthesis of dimethyl ether (DME) from CO₂ hydrogenation over novel hybrid catalysts containing a Cu–ZnO–ZrO₂ catalyst admixed with WO_x/Al₂O₃ catalysts. The effect of pore sizes (6.6, 33 and 51 nm) of Al₂O₃ support and W loading contents (5, 10, 15 and 20 wt%) on the physicochemical properties of WO_x/Al₂O₃ catalysts as well as their catalytic performance is also investigated. Characterization results from XRD, XPS and UV-vis reveal that the structure of WO_x species on the surface of Al₂O₃ is mainly related to W surface density, i.e. W loading content, which can be classified into three regions: a mixture of monotungstate species and polytungstate species at W surface density < 5.1 W nm⁻², a monolayer coverage of WO_x species over the surface of Al₂O₃ at W surface density ~ 5.1 W nm⁻² and a co-existence of polytungstate species and WO₃ nanoparticles at W surface density > 5.1 W nm⁻². The space-time yield (STY) of DME exhibits a volcanic trend as a function of W surface density with the maximum values at nearly monolayer coverage (~4.7 W nm⁻²) for large pores (33 and 51 nm), and above monolayer coverage (8.0 W nm⁻²) for small pore (6.6 nm). The hybrid catalyst with optimum Cu–ZnO–ZrO₂ and WO_x/Al₂O₃ weight ratio of 1.5 achieves the highest STY of DME of 165.6 g_{DME} kg_{cat}⁻¹ h⁻¹. The long-term stability test shows a gradual decrease in activity of the hybrid catalyst which is attributed a combination of coke deposition, sintering of Cu-based catalyst and WO_x/Al₂O₃ catalyst and strongly adsorbed water molecules.

1. Introduction

Increasing energy demand and environmental issues have compelled human society to seek an alternative clean energy [1-3]. Hydrogen produced by the electrolysis of water using renewable energy such as solar and wind can be considered as an important clean energy carrier for the future [4-8]. However, the storage of hydrogen requires complex technical issues due to its high volatility and potentially explosive nature. Therefore transformation of hydrogen into small hydrogenated molecules such as methane [9], methanol [10-15], ammonia [16] and dimethyl ether (DME) [17] is promising alternative as they can be stored and transported using existing infrastructure. Among these molecules, DME is very interesting because it can be used in a diesel engine due to its high cetane number. Since the DME molecule does not have carbon-carbon bond, the combustion of DME does not make any particulate emission so that it can be considered as a clean fuel. In addition, DME can be used as an efficient H₂ carrier for fuel cell application. More importantly, DME can be synthesized from recycled CO₂ using renewable energy which is an efficient way to achieve a sustainable carbon cycle.

https://doi.org/10.1016/j.enconman.2018.01.016

^{*} Corresponding author at: Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand.

E-mail address: fengttwi@ku.ac.th (T. Witoon).

Received 2 November 2017; Received in revised form 25 December 2017; Accepted 5 January 2018 0196-8904/ © 2018 Elsevier Ltd. All rights reserved.

DME can be directly synthesized from CO₂ and H₂ by a combination of methanol synthesis catalyst and an acid catalyst in a single reactor [18-21]. This approach has achieved remarkable progress over the conventional two-step process, i.e. CO₂ hydrogenation to methanol and its subsequent dehydration in a separate reactor, because the in-situ conversion of methanol to DME leads to a higher CO₂ conversion to methanol according to Le Chatelier's principle. To date, a ternary CuO-ZnO-ZrO2 catalyst has been reported to be the most efficient catalyst for the synthesis of methanol from CO₂ hydrogenation due to its high activity and stability compared a commercial CuO-ZnO-Al₂O₃ [22], which is an apparent choice to be used in the single-step synthesis of DME from CO₂. In contrast, a large variety of solid acid catalysts such as alumina [23,24], zeolites [25–29] and sulfated-zirconia [18] appears as candidates for the dehydration of methanol to DME. Depending on the acid strength of catalysts, methanol can be converted to various products such as DME, light olefins and other hydrocarbons, i.e. the product tends to form other hydrocarbons over catalysts with strong acid sites. For this reason, Al₂O₃ is more suitable for the selective methanol dehydration to DME because it does not catalyze the methanol/ DME to hydrocarbons due to its less strong acid sites. However, it exhibits a poorer performance in terms of activity and stability [30].

 $CO_2 + 3H_2 \leftrightarrow CH_3OH + H_2O \quad \Delta H_{298K} = -49.4 \text{ kJ mol}^{-1}$ (1)

 $2CH_3OH \leftrightarrow CH_3OCH_3 + H_2O \quad \Delta H_{298K} = -24.0 \text{ kJ mol}^{-1}$ (2)

$$CO_2 + H_2 \leftrightarrow CO + H_2O \quad \Delta H_{298K} = +41.2 \text{ kJ mol}^{-1}$$
(3)

Several attempts have been made to improve the catalytic performance of Al₂O₃ catalysts by optimizing the physicochemical properties of Al₂O₃ [23] or modifying with various oxides such as silica, phosphorous, niobium and tungsten [31,32]. Seo et al. [23] studied the effect Al_2O_3 phases including γ - Al_2O_3 and η - Al_2O_3 on the methanol dehydration to DME. They found that n-Al₂O₃ catalyst was more active than y-Al2O3, although total acidity and acid site density of both catalysts were nearly identical, suggesting a crucial role of Al₂O₃ phases. The effect of SiO₂ addition onto the surface of γ -Al₂O₃ on the methanol dehydration activity was studied by Mollavali et al. [33]. They found that higher methanol activity was mainly related to weak and medium acidic sites. Said et al. reported that the methanol dehydration over Al₂O₃-impregnated with 5 wt% WO₃ had the higher activity than the unmodified Al₂O₃ catalyst which was attributed to the higher number and strength of acid sites [32]. Nevertheless, controversial discussions are present in the literature regarding the role of active site of WO₃/ Al₂O₃ catalysts. Macht et al. [34] reported on the alcohol dehydration activity of WOx/Al2O3 catalysts and found that the dehydration rate followed a volcanic trend as a function of WO_x surface density with a maximum value at WO_x surface density of 9–10 W nm⁻². This improved dehydration rate observed with increase of WO_x surface density was attributed to higher strength of acid sites and the formation of Brønsted acid sites. However, Kim et al. [35] reported that the turnover rate for methanol dehydration to DME monotonically decreased as the WO_x surface density increased, suggesting a greater catalytic acidity of the bare Al₂O₃ surface compared to WO_x species coordinated to the surface of Al₂O₃. Besides, the effect of pore size of Al₂O₃ support on the physicochemical properties of Al₂O₃-supported WO₃ catalysts as well as their catalytic activity and stability has not yet been studied. In the present contribution, Al₂O₃ supports with three different mean pore sizes (6.6, 33.0 and 51.0 nm) are impregnated with different tungsten contents and used in combination with a Cu-ZnO-ZrO₂ catalyst for direct synthesis of DME from CO₂ and H₂. In addition, the weight ratios of the hybrid catalysts containing the Cu-ZnO-ZrO₂ and WO_x/Al₂O₃ catalysts are optimized to achieve the maximum yield of DME. The results demonstrate that the pore size of Al₂O₃ supports determines the dispersion of tungsten and plays a vital role on the activity. Moreover, the correlation between the structure of Al₂O₃-supported WO₃ catalysts and the space-time yield of DME has been established.

2. Experimental

2.1. Preparation of CuO-ZnO-ZrO₂ catalyst

A CuO–ZnO–ZrO₂ catalyst with a Cu: Zn: Zr atomic ratio of 38.2: 28.6: 33.2 was prepared via a reverse co-precipitation method [10]. In a typical synthesis, 100 mL metal salts solution containing desired amount of Cu(NO₃)₂·3H₂O, Zn(NO₃)₂·6H₂O and ZrOCl₂·8H₂O was added dropwise into 500 mL of 0.1 M NaHCO₃ solution under stirring at room temperature. The pH of solution was adjusted to 7.5 by adding 0.1 M NaHCO₃. The solution was heated from room temperature to 80 °C under continuously stirring at 400 rpm and kept constant at that temperature for 2 h. Subsequently, the precipitate was filtered and washed with deionized water (3 L). The resulting product was dried at 100 °C for 24 h and then calcined in air at 350 °C for 2 h. The physicochemical properties of the CuO–ZnO–ZrO₂ catalyst are reported in our previous work [10].

2.2. Preparation of WO_x/Al₂O₃ catalysts

The alumina supports with different mean pore size (Sigma Aldrich) were impregnated with the desired amount of ammonium (para)tungstate hydrate ($H_{42}N_{10}O_{42}W_{12}xH_2O$, Sigma Aldrich) to achieve the tungsten loading contents of 5, 10, 15, 20 and 25 wt%. The slurry mixture was stirred at 60 °C for 5 h, dried at 100 °C overnight and then calcined at 800 °C for 4 h. The resulting catalysts are designated as X-AS, X-AM and X-AL, where X was tungsten loading content by weight percent and S, M and L were referred to the mean pore size of alumina supports with small, medium and large pores, respectively.

2.3. Catalyst characterization

N₂-sorption isotherms, pore size distribution, BET surface area and total pore volume of all catalysts were measured with a Quantachrome Autosorb-1C instrument at -196 °C. Prior to measurement, the samples were degassed at 200 °C for 24 h. Pore size distribution was calculated from the desorption branch of the isotherms using the Barrett–Joyner–Hallenda (BJH) method. The BET surface area (S_{BET}) was estimated for relative pressure values (P/P₀) ranging from 0.05 to 0.30 and the total pore volume was calculated at P/P₀ of 0.995.

X-ray diffraction (XRD) patterns of all WO_x/Al_2O_3 catalysts were recorded with a Bruker D8 Advance diffractometer using Cu K α radiation ($\lambda = 0.154060$ nm). The measurements were obtained in a range of 5–75° in the scan mode of 0.02° step size at room temperature.

Absorption spectra and band gap energy of different WO_x/Al₂O₃ catalysts were collected with a UV–visible diffuse reflectance spectroscopy (JASCO: V-670) at room temperature using BaSO₄ as a reference standard. The obtained reflectance spectra were transformed to the plot of $(\alpha h\nu)^{1/2}$ versus photon energy $(h\nu)$. The point of intersection of the tangent line through the slope with its lower curve baseline was estimated the band gap energy (Eg).

X-ray photoelectron spectroscopy (XPS) of different WO_x/Al_2O_3 catalysts was carried out at beamline 5.3 of the Synchrotron Light Research Institute (SLIRI), Thailand with a PHI5000 Versa Probe II (ULVAC-PHI, Japan) using Mg K α radiation source. C1s peak at 284.8 eV was used as reference to calibrate all binding energies and the XPS data were processed and analyzed with PHI MultiPak XPS software.

Temperature-programmed desorption of ammonia (NH₃-TPD) was performed to measure the total acidity of catalysts. In a typical experiment, a WO_x/Al₂O₃ catalyst (100 mg) was placed in the reactor, heated under He flow at 550 °C for 2 h and subsequently cooled down to 100 °C. Once the 100 °C temperature was reached and stabilized, 10% v/v NH₃ in He was introduced into the system for 1 h. After that, the feed was then switched to pure He for 1 h to remove the physisorbed NH₃. The NH₃ desorption measurement was conducted in a flow of He (50 mL min⁻¹) at a heating rate of 15 °C min⁻¹ from 100 °C to 500 °C.

Download English Version:

https://daneshyari.com/en/article/7159120

Download Persian Version:

https://daneshyari.com/article/7159120

Daneshyari.com