Contents lists available at ScienceDirect





## **Energy Conversion and Management**

journal homepage: www.elsevier.com/locate/enconman

## Comparative study of the conventional types of heat and mass exchangers to achieve the best design of dew point evaporative coolers at diverse climatic conditions

## Check for updates

### Ali Sohani, Hoseyn Sayyaadi\*, Negar Mohammadhosseini

Optimization of Energy Systems' Installations Lab., Faculty of Mechanical Engineering-Energy Division, K.N. Toosi University of Technology, P.O. Box 19395-1999, No. 15-19, Pardis St., Mollasadra Ave., Vanak Sq., Tehran 1991 943344, Iran

#### ARTICLE INFO

Keywords: Best heat and mass exchanger Dew-point (M-cycle) indirect evaporative coolers Life-cycle cost analysis Multi-objective optimization Thermal comfort conditions Water consumption

#### ABSTRACT

The objective of this research is a comparative analysis of various kinds of heat and mass exchangers of dew point indirect evaporative cooler. Considering three key performance parameters of an evaporative cooler, namely life-cycle cost, annual water consumption and the annual average of the coefficient of performance as objective functions, the best design of two popular types of the dew-point evaporative cooler (counter-regenerative and cross configurations) for employing in small-scale residential buildings was found through a multi-objective optimization approach. Both operational and geometric characteristics of the coolers were selected as the design (decision) variables while proper constraints such as thermal comfort were imposed. Afterward, between the optimized counter-regenerative and cross configurations, the foremost one was selected for representative cities of four diverse groups within the Köppen-Geiger climate classification system. It was found that in very hot and dry areas, the counter-regenerative configuration was the ideal choice while in other investigated climates, using cross configuration was a better alternative. Moreover, the results showed that in comparison to the base case conditions by using the best-optimized configurations, 64.4, 86.4, and 1039.0% improvements in life-cycle cost, the annual water consumption, and the annual average of the coefficient of performance were achieved, respectively.

#### 1. Introduction

During recent years, dew point indirect evaporative cooling system (DPIEC) has occupied an important role in air-conditioning system technologies. The system was originally patented and developed by Valery Maisotsenko [1-3]. Therefore, the system is also known as the Maisotsenko (M-cycle) indirect evaporative cooling system [4,5]. Maisotsenko (M-cycle) indirect evaporative coolers (MCIECs) not only provide the supply air temperature below the wet-bulb close to dew point temperature by the highest efficiency but also consume much lower electricity than the similar vapor compression systems [6]. Additionally, MCIECs are an environmental option for the conventional vapor compression system [7]. Providing cooled air without adding moisture and wet-bulb effectiveness of higher than 100% could be counted as the main advantages of MCIECs compared to direct evaporative cooling systems (DECs) and other indirect evaporative cooling systems (IECs) [8]. There are different versions of the air flow arrangement in the M-cycle heat and mass exchangers [9]. Fig. 1a represents a counter-flow regenerative heat and mass exchanger with partial extraction of air (also known as regenerative heat and mass exchanger). Moreover, Fig. 1b shows a cross-flow heat and mass exchanger. Each of these illustrated figures is one of the different types of air flow arrangement. Counter-flow regenerative and cross-flow M-cycles (CoFRMC and CrFMC) are the major popular developed kinds of heat and mass exchangers of MCIECs [10].

There have been two main approaches by which the performance of MCIECs has been analyzed: conducting experiments and developing analytical or numerical models. Conducting experiments is a method in which the researchers have performed a number of experiments and then they have reported and interpreted the results [11–14]. For instance, Xu et al. [11] investigated the performance of an innovative CoFRMC, in which high-quality wet material layer and intermittent water distribution system were employed. In another study, Kashif Shahzad et al. [12] tested an integrated cooling system which composed of solid desiccant and CrFMC. Moreover, Duan et al. [13] found the potential of electrical energy saving of a CoFRMC at diverse climatic conditions of China using an experiment-based evaluation. Khalid et al. [14] also studied the performance of a CrFMC under low inlet air

\* Corresponding author. E-mail addresses: alisohany@yahoo.com, asohani@mail.kntu.ac.ir (A. Sohani), sayyaadi@kntu.ac.ir (H. Sayyaadi).

https://doi.org/10.1016/j.enconman.2017.12.042

Received 1 November 2017; Received in revised form 29 November 2017; Accepted 12 December 2017 0196-8904/ © 2017 Elsevier Ltd. All rights reserved.

Energy Conversion and Management 158 (2018) 327-345

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nomencl                  | ature                                                        | PWF              | present worth factor                                      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------|------------------|-----------------------------------------------------------|--|
| $ \begin{array}{rcl} AACC & the annual average of coefficient of performance & RLSHS & the ratio of low speed to the high speed of the fan AACC & the annual average of cooling capacity (W) & T & temperature (C) & temperature (C) & temperature (C) & soft computing and statistical techniques for order preference by similarity to ideal so-third or a soft computing and statistical techniques for order preference by similarity to ideal so-third or a soft computing and statistical techniques for order preference by similarity to ideal so-third or a soft computing and statistical techniques for order preference by similarity to ideal so-third or a soft computing and statistical techniques for order preference by similarity to ideal so-third or a soft computing and statistical techniques for order preference by similarity to ideal so-third or a soft computing and statistical techniques for order preference by similarity to ideal so-third or a soft computing and statistical techniques for order order order order order order for the state state order orde$                                                                                                                                                                                                                           |                          |                                                              | RFMP             | retailer's profit                                         |  |
| AACCthe annual average of cooling capacity (KW)Ttemperature ('C)AADPthe annual average of dew-point efficiencyTOPSIStechnique for order preference by similarity to ideal so-<br>lutionAWCannual water consumption (m <sup>3</sup> year <sup>-1</sup> )Tmean radiant temperature ('C)Ccost (\$)SCSTsoft computing and statistical techniques $c_p$ constant pressure specific heat ( $lkg^{-1}K^{-1}$ )SHfin static head ( $lPa$ )COFRMCconstant pressure specific heat ( $lkg^{-1}K^{-1}$ )SHfin static head ( $lPa$ )COFRMCconstant pressure specific heat ( $lkg^{-1}K^{-1}$ )SHfin static head ( $lPa$ )COFRMCconstant pressure specific heat ( $lkg^{-1}K^{-1}$ )SHfin static head ( $lPa$ )COFthe coefficient of performanceWARworking ait to total inlet air ratioCOFRMCcros-flow regenerative Maisotsenko (M-cycle) indirectWARworking ait to total inlet air ratioCOFRMCcros-flow regenerative Maisotsenko (M-cycle) indirectWARworking ait to total inlet air ratioDFIECdevoloritwarethe size of a component of the system whose cost is de-<br>termined based on thatDFIECdey point Indirect evaporative cooling systemsoft airif athe fraction of time in an hour in which CoFRMC or<br>bardbardbardbardbardbardf.athe fraction of trase income at the end of system life span<br>to the initial costfrf.ainfation ratein<br>ininlet airf.ainfation rate<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AACOP                    | the annual average of coefficient of performance             | RLSHS            | the ratio of low speed to the high speed of the fan       |  |
| AADP<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AACC                     | the annual average of cooling capacity (kW)                  | T                | temperature (°C)                                          |  |
| AWC   antificial neural network   Intion     AWC   antificial neural network   Terms andiant temperature (°C)     C   cost (\$)   SCST   soft computing and statistical techniques     c_C   cost (\$)   SRH   fan static head (Pa)     CC   costing capacity (W)   SRH   fan static head (Pa)     CoBRMC   conter-flow regenerative Maisotenko (M-cycle) indirect   V   velocity (m s <sup>-1</sup> )     COP   the coefficient of performance   WAR   working air to total inlet air ratio     COP   coss-flow regenerative Maisotenko (M-cycle) indirect   W   cost witch (m)     COP   the coefficient of performance   WAR   working air to total inlet air ratio     COP   exporative cooler   War   the system obsec cost is de-termined based on that     DH   hydraulic diameter (m)   years   the system si life span (years)     DEC   diver exporative cooler   stripts   termined based on that     FPEC   electrical power consumption (W)   barr   air     EPEC   electrical power consumption (W)   barr   fan     fag   the fraction of time in an hour in which CoFRMC or   barr   barr     fag   the fraction of reside income at the end of system life span to in inite air ratio   fan statia taid </td <td>AADP</td> <td>the annual average of dew-point efficiency</td> <td>TOPSIS</td> <td>technique for order preference by similarity to ideal so-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AADP                     | the annual average of dew-point efficiency                   | TOPSIS           | technique for order preference by similarity to ideal so- |  |
| $ \begin{array}{cccc} AWC & ansata water consumption (m3 year-1) & T & mean radiant temperature (C) \\ cost (s) & SCT & soft computing and statistical techniques \\ c_{p} & constant pressure specific heat (J kg-1 K-1) & SH & fan static head (Pa) \\ CC & cooling capacity (W) & SRM & the stepwise regression method \\ CFRMC & cooler width (m) & V & velocity (ms-1) \\ evaporative cooler & W & cooler width (m) \\ CPMC & coofficient of performance & WAR & working air to total inlet air ratio \\ evaporative cooler & V & velocity (ms-1) \\ evaporative cooler & W & cooler width (m) \\ CFRMC & consention of the system whose cost is de- \\ d & discount rate & vaporative cooler & V & the size of a component of the system whose cost is de- \\ d & discount rate & vaporative cooling system \\ DPLC & direct evaporative cooling system & Scripts \\ EPC & electrical power consumption (W) \\ FW & external work (W m-2) & air \\ f_{am} & the fraction of time in an hour in which CoFRMC or \\ GrADH & fraction of time in an hour in which CoFRMC or \\ f_{amate} & the fraction of time in an hour in which CoFRMC or \\ f_{amate} & the fraction of time in an hour in which CoFRMC or \\ f_{amate} & the fraction of time in an hour in which CoFRMC or \\ f_{amate} & the fraction of time in an hour in which CoFRMC or \\ f_{amate} & the fraction of time in an hour in which CoFRMC or \\ f_{amate} & the fraction of time in an hour in which CoFRMC or \\ f_{amate} & the fraction of resel income at the end of system life span \\ to the initial cost & up on the difference \\ f_{amate} & the fraction of time in an hour in which CoFRMC or \\ f_{amate} & the fraction of time in an hour in which CoFRMC or \\ f_{amate} & the fraction of time in an hour in which CoFRMC or \\ f_{amate} & the fraction of time in a hour in which CoFRMC or \\ f_{amate} & the fraction of time in a hour in which CoFRMC or \\ f_{amate} & the fraction of time in a hour in which CoFRMC or \\ f_{amate} & the fraction of time in a hour in which CoFRMC or \\ f_{amate} & the fraction of time in the system whose cot i$                                                                                                                                                                                                         | ANN                      | artificial neural network                                    |                  | lution                                                    |  |
| Ccost (\$)SCSTsoft computing and statistical techniques $c_p$ constant pressure specific heat (J kg $^{-1}$ K $^{-1}$ )SHfan static head (Pa)CCCcoulter-flow regenerative Maisotsenko (M-cycle) indiretVvelocity (ms $^{-1}$ )COPthe coefficient of performanceWARworking air to total inlet air ratioCFMCcross-flow regenerative Maisotsenko (M-cycle) indiretWCwater consumptionCPFMCcross-flow regenerative Maisotsenko (M-cycle) indiretWCwater consumptionCPFMCcross-flow regenerative cooling systemSriftthe size of a component of the system whose cost is determined based on thatDFECdew point indiret (m)yearsthe system's life span (years)DFECexternal work (W m $^{-2}$ )airairaffairairbasef_mthe fraction of time in an hour in which CoFRMC orbasebase conditionf_mthe fraction of time in an hour in which CoFRMC orbasebasef_mthe fraction of time in an hour in which CoFRMC orbasebasef_mthe fraction of time in an hour in which CoFRMC orbasebasef_mthe fraction of time in an hour in which CoFRMC orin initialf_mthe fraction of time in an hour in which CoFRMC orbasef_mthe fraction of time in an hour in which CoFRMC orin initialf_mthe fraction of resole income at the end of system life spandpdwdy channel (m)inintel airf_m </td <td>AWC</td> <td>annual water consumption <math>(m^3 year^{-1})</math></td> <td><math>\overline{T_r}</math></td> <td>mean radiant temperature (°C)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AWC                      | annual water consumption $(m^3 year^{-1})$                   | $\overline{T_r}$ | mean radiant temperature (°C)                             |  |
| $\begin{array}{ccc} c_{1} & \mbox{constant pressure specific heat (J kg^{-1} K^{-1}) & SH & fan static head (Pa) & \\ CC & \mbox{constant pressure specific heat (J kg^{-1} K^{-1}) & SH & fan static head (Pa) & \\ CPRMC & \mbox{constant presentative Maisotsenko (M-cycle) indirect & volume volume (Pa) & \\ columer-flow regenerative Maisotsenko (M-cycle) indirect & W & \mbox{colity (n s^{-1})} & \\ columer-flow regenerative Maisotsenko (M-cycle) indirect & W & \mbox{colity air to total inflet air ratio & \\ corse-flow regenerative Maisotsenko (M-cycle) indirect & W & \mbox{water consumption & } & \\ corse-flow regenerative Maisotsenko (M-cycle) indirect & W & \mbox{water consumption & } & \\ water consumption & WAR & \mbox{water consumption & } & \\ W & \mbox{discont rate (m) & yars & \mbox{the system's life span (years) & } & \\ DHC & \mbox{direct evaporative cooler & } & \\ DHC & \mbox{direct evaporative cooling system & \\ SCripts & \mbox{eternal work (W m^{-3}) & \mbox{arian indirect evaporative cooling system & \\ GPC & \mbox{eternal work (W m^{-3}) & arian indirect evaporative cooling system in hear in a in a fraction of time in an hour in which CoFRMC or fan & \mbox{arian back on the end of system life span & \mbox{arian back on the end of system life span & \mbox{arian back on the end of system life span & \mbox{arian back on the end of system life span & \mbox{arian back on the end of system life span & \mbox{arian back on the end of system life span & \mbox{arian back on the end of system life span & \mbox{arian back on the end of system life span & \mbox{arian back on the system second back on the end & \mbox{arian back on the system second back & \mbox{arian back &$                                                                                                                                                                                                                      | С                        | cost (\$)                                                    | SCST             | soft computing and statistical techniques                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cn                       | constant pressure specific heat $(J kg^{-1} K^{-1})$         | SH               | fan static head (Pa)                                      |  |
| CoFRMCevaporative cooler $V$ velocity (m s <sup>-1</sup> )CPH<br>CPH<br>conserior coefficient of performance $WA$ cooler width (m)CPHMCcross-flow regenerative Maisotsenko (M-cycle) indirect<br>evaporative cooler $W$ cooler width (m)CPHMCcross-flow regenerative Maisotsenko (M-cycle) indirect<br>evaporative cooler $W$ water consumptionDr.discount rate $X$ the size of a component of the system whose cost is de-<br>termined based on thatDr.hydraulic diameter (m)yearsthe system's life span (years)DECdirect evaporative coolerScriptsPPECelectrical power consumption (W)alrairEWexternal work (W m <sup>-2</sup> )alrair $f_{end}$ the fraction of time in an hour in which CoFRMC or<br>GrEPKC is onbasebase $f_{end}$ the fraction of reade income at the end of system life span<br>to the initial costdbdry bulb $f_{ende}$ the height of dry channel (m)ininitialgap<br>1inflation rateOoperatingHcooler height (m)frfriction $h_e$ conductive heat transfer coefficient (W m <sup>-2</sup> K <sup>-1</sup> )O $I_a$ insulation (m <sup>2</sup> K W <sup>-1</sup> )au $I_a$ insulation (m <sup>2</sup> K W <sup>-1</sup> )wa $I_b$ conductive heat tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | с́с                      | cooling capacity (W)                                         | SRM              | the stepwise regression method                            |  |
| evaporative coolerWcooler width (m)COPthe coolerWARworking air to total inlet air ratioCOPcross-flow regenerative Maiotsenko (M-cycle) indirectWARworking air to total inlet air ratioCMCevaporative coolerXthe size of a component of the system whose cost is determined based on thatDifdirect evaporative cooleryearsthe size of a component of the system whose cost is determined based on thatDifdirect evaporative cooleryearsthe size of a component of the system whose cost is determined based on thatDifdirect evaporative cooleryearsthe size of a component of the system whose cost is determined based on thatFPTECdeve point indirect evaporative coolerscriptsscriptsFWCelectrical power consumption (W)airairairFWeternal work (W m <sup>-2</sup> )airairairfonthe fraction of time in an hour in which CoFRMC or<br>to initial costboardboardfonthe fraction of resale income at the end of system life span<br>to the initial costin initialgenthe height of dry channel (m)ininitialforcooler height (m)frfrictionhcooler height (m)frfrictionhcooler height (m)frfrictionhinflation ratefrfrictionforcooler height (m)frfrictionhinflation ratefrfrictionfinflation ratefrfr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CoFRMC                   | counter-flow regenerative Maisotsenko (M-cvcle) indirect     | V                | velocity $(m s^{-1})$                                     |  |
| COPthe coefficient of performanceWARworking air to total inlet air ratioCrFMCcross-flow regenerative Maisotsenko (M-cycle) indirectWCwater computionddiscount rateWCwater component of the system whose cost is determined based on that $D_{II}$ hydraulic diameter (m)yearsthe system's life span (years)DECdirect evaporative coolerScriptsDFIECetertical power consumption (W)ScriptsEWexternal work (W m <sup>-2</sup> )airairair $f_{on}$ the fraction of time in an hour in which CoFRMC or<br>CrFAC is onbase $f_{reade}$ the fraction of sale income at the end of system life span<br>to the initial costingapthe height of dry channel (m)ingapthe height of dry channel (m)inhcooler height (m)frh_ccoovercive heat transfer coefficient (W m <sup>-2</sup> K <sup>-1</sup> )0iinflation rate01iinflation rate01iconductive heat transfer coefficient (W m <sup>-1</sup> K <sup>-1</sup> )relativeichannel length (m)sasupply airkconductive heat transfer coefficient (W m <sup>-1</sup> K <sup>-1</sup> )waterkconductive heat transfer coefficient (W m <sup>-1</sup> K <sup>-1</sup> )vaterkconductive heat transfer coefficient (W m <sup>-1</sup> K <sup>-1</sup> )waterkconductive heat transfer coefficient (W m <sup>-1</sup> K <sup>-1</sup> )waterkconductive heat transfer coefficient (W m <sup>-1</sup> K <sup>-1</sup> )waterkconductive he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | evaporative cooler                                           | W                | cooler width (m)                                          |  |
| CrFMCcross-flow regenerative Maisotsenko (M-cycle) indirect<br>evaporative coolerWCwater consumption $D_{IL}$ discount rate $X$ the size of a component of the system whose cost is de-<br>termined based on that $D_{IL}$ direct evaporative cooler $X$ the size of a component of the system whose cost is de-<br>termined based on that $D_{ILC}$ direct evaporative cooler $Scripts$ $Scripts$ $EPC$ electrical power consumption (W) $air$ $air$ $EW$ external work (W m <sup>-2</sup> ) $air$ $air$ $f_{on}$ the fraction of time in an hour in which CoFRMC or<br>$GrefNC is on$ $base$ base condition<br>$board$ $f_{on}$ the fraction of creale income at the end of system life span<br>to the initial cost $db$ $dry$ bulb $f_{reale}$ the fraction of creale income at the end of system life span<br>to the initial cost $I$ initial<br>initial $gap$ the height of dry channel (m)inin let air $I$ $GMDHF$ group method of data handling type neural network $fan$ fan<br>fr $I_{c}$ insulation ( $m^2 K^{-1}$ ) $O$ operating $i$ inflation rate $O$ operating $I_{c}$ insulation ( $m^2 K^{-1}$ ) $O$ operating $i$ inflation rate $PE$ purchase of equipment $k$ conductive heat transfer coefficient (W m <sup>-1</sup> K <sup>-1</sup> ) $relative$ $k$ conductive heat transfer coefficient (W m <sup>-1</sup> K <sup>-1</sup> ) $relative$ $k$ conductive heat transfer coefficient (W m <sup>-1</sup> K <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COP                      | the coefficient of performance                               | WAR              | working air to total inlet air ratio                      |  |
| evaporative cooler tegentre to introduction (un plane) interest of a component of the system whose cost is determined based on that point indirect evaporative cooler interest of a component of the system whose cost is determined based on that point indirect evaporative cooler interest of a component of the system whose cost is determined based on that point indirect evaporative cooler interest of a component of the system whose cost is determined based on that point indirect evaporative cooler interest of a component of the system whose cost is determined based on that point indirect evaporative cooler interest of a component of the system whose cost is determined based on that point indirect evaporative cooler of the fraction of time in an hour in which CoFRMC or correctly form of time in an hour in which CoFRMC or correctly base into a fract of the fraction of resale income at the end of system life span to the initial cost in the initial cost in the the height of dry channel (m) in the fraction of resale income at the end of system life span to the height of dry channel (m) in the height of dry channel (m) in the fract in fraction of mesale income (S) in the fract in fraction of mesale income (S) in the fract in transfer coefficient (W m <sup>-1</sup> K <sup>-1</sup> ) in the fract income (S) in the fract income (S) in the fract income (S) in the fract income is supply a ir set income (S) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg s <sup>-1</sup> ) in the mass flow rate (Mg | CrFMC                    | cross-flow regenerative Maisotsenko (M-cycle) indirect       | WC               | water consumption                                         |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1.1.10                 | evaporative cooler                                           | X                | the size of a component of the system whose cost is de-   |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d                        | discount rate                                                |                  | termined based on that                                    |  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D <sub>11</sub>          | hydraulic diameter (m)                                       | vears            | the system's life span (years)                            |  |
| Diffect<br>dew point indirect evaporative cooling systemScriptsEPC<br>EPC<br>electrical power consumption (W)airairEW<br>external work (W m <sup>-2</sup> )airairfor<br>for<br>the fraction of time in an hour in which CoFRMC or<br>CrFMC is on<br>to the fraction of resale income at the end of system life span<br>to the height of dry channel (m)basefor<br>forableclothing surface area factordbdry builbforablethe fraction of resale income at the end of system life span<br>to the initial costininlet airgapthe height of dry channel (m)ininlet airGMDHgroup method of data handling type neural networkfanfanHcooler height (m)frfrictionh_cconvective heat transfer coefficient (W m <sup>-2</sup> K <sup>-1</sup> )Ooperating in the first yeariinflation rateO1operating in the first yearI_ainsulation (m <sup>2</sup> K W <sup>-1</sup> )rel relativeLchannel (m)sasu supply airLchannel length (m)sasu supply airLCClife-cycle cost (\$)thermostat thermostatmmetabolic rate (W m <sup>-2</sup> )wwaterMmetabolic rate (W m <sup>-2</sup> )Qoutine towing airQvolumetric flow rate of required fresh air (m <sup>3</sup> h <sup>-1</sup> )AdifferencePpressure (Pa)gminol loss coefficientPApressure (Pa)gminol loss coefficientPApressure (Pa)grelative humidity (kg <sub>moisture</sub> kg <sub>dry ai</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DFC                      | direct evaporative cooler                                    | years            | the system s me span (jears)                              |  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DPIEC                    | dew point indirect evaporative cooling system                | Scripts          |                                                           |  |
| Breeexternal work (W m <sup>-2</sup> )airair $f_{ont}$ the fraction of time in an hour in which CoFRMC or<br>CrFMC is on<br>$f_{calle}$ $base$ basebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebase <td>EPC</td> <td>electrical power consumption (W)</td> <td>ourpu</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPC                      | electrical power consumption (W)                             | ourpu            |                                                           |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EW                       | external work ( $Wm^{-2}$ )                                  | air              | air                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f                        | the fraction of time in an hour in which CoEPMC or           | hase             | hase condition                                            |  |
| $ \begin{array}{cccc} Grand b & dry bulb \\ for d & dry bulb \\ fresale \\ fresa$                  | Jon                      | CrEMC is on                                                  | base             | board                                                     |  |
| $ \begin{aligned} \int_{result}^{d} & \text{chorms surface factor of the end of system life span to the fraction of resule income at the end of system life span to the initial cost & I initial \\ gap the height of dry channel (m) & in inlet air \\ GMDH group method of data handling type neural network fan fan \\ cooler height (m) & fr friction \\ h_c & \text{convective heat transfer coefficient (W m-2 K-1) & O operating in the first year \\ I inflation rate & O1 operating in the first year \\ I_d & insulation (m2 K W-1) & out outlet (product) air \\ I_k & resale income ($) & PE purchase of equipment \\ k & \text{conductive heat transfer coefficient (W m-1 K-1) & rel relative \\ L & channel length of the channel & sensible \\ LCC & life-cycle cost ($) & thermostat thermostat \\ m & metabolic rate (W m-2) & wa working air \\ M & metabolic rate (W m-1) & Qa & working air \\ MCIEC & Maisotenko (M-cycle) indirect evaporative cooler \\ NSGA-II & non-dominated sorted genetic algorithm 2 & Greek symbols \\ Q & volumetric flow rate (m3 h-1) & Qa & difference \\ P & pressure (Pa) & g & efficiency \\ PMV & predicted mean vote \\ PAG & water vapor partial pressure (Pa) & g & efficiency \\ PMV & predicted mean vote \\ PDF & Pareto optimal frontier \\ PAG & volumetric flow rate of required fresh air (m3 h-1) & Qa & difference \\ P & pressure (Pa) & g & efficiency \\ PMV & predicted percentage dissatisfied (%) & p & relative humidity (%gmoisture kgdry air-1) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | f                        | clothing surface area factor                                 | dh               | dry hulb                                                  |  |
| $      J_{restrict}  \text{difference}  I  I  \text{difference}  I  I  I  I  I  I  I  I  I  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J <sub>cl</sub><br>f     | the fraction of resale income at the end of system life span | dn               | dew point                                                 |  |
| gapthe height of dry channel (m)inGMDHgroup method of data handling type neural networkfanfanHcooler height (m)frfrictionh_cconvective heat transfer coefficient (W m <sup>-2</sup> K <sup>-1</sup> )Ooperatingiinflation rateO1operating in the first yearI_dinsulation (m <sup>2</sup> K W <sup>-1</sup> )outoutlet (product) airI_Rresale income (\$)PEpurchase of equipmentkconductive heat transfer coefficient (W m <sup>-1</sup> K <sup>-1</sup> )relrelativeLchannel length (m)sasupply airL*dimensionless length of the channelsensiblesensibleLCClife-cycle cost (\$)thermostat thermostatmthe mass flow rate (kg s <sup>-1</sup> )waworking airMCIECMaistenko (M-cycle) indirect evaporative coolerGreek symbolsNSGA-IInon-dominated sorted genetic algorithm 2Greek symbolsQvolumetric flow rate of required fresh air (m <sup>3</sup> h <sup>-1</sup> ) $\Delta$ differencePpressure (Pa) $\zeta$ minor loss coefficientPApredicted mean vote $\nu$ kinematic viscosity (m <sup>2</sup> s <sup>-1</sup> )POFPareto optimal frontier $\rho$ density (kg m <sup>-3</sup> )PPDpredicted percentage dissatisfied (%) $\phi$ relative humidity (kg moissure/kgdry air <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jresale                  | to the initial cost                                          | ир<br>I          | initial                                                   |  |
| gap<br>GMDHintermediationGMDHgroup method of data handling type neural networkfanfanfrh_ccooler height (m)h_cconvective heat transfer coefficient (W m <sup>-2</sup> K <sup>-1</sup> )iinflation rateO1Iinsulation (m <sup>2</sup> K W <sup>-1</sup> )I_dinsulation (m <sup>2</sup> K W <sup>-1</sup> )I_kresale income (\$)Kconductive heat transfer coefficient (W m <sup>-1</sup> K <sup>-1</sup> )I_kresale income (\$)Lchannel length (m)Lchannel length (m)L*dimensionless length of the channelLCClife-cycle cost (\$)mthe mass flow rate (kg s <sup>-1</sup> )Mmetabolic rate (W m <sup>-2</sup> )Waworking airMCIECMaisotsenko (M-cycle) indirect evaporative coolerNSGA-IInon-dominated sorted genetic algorithm 2Qvolumetric flow rate of required fresh air (m <sup>3</sup> h <sup>-1</sup> )Qvolumetric flow rate of required fresh air (m <sup>3</sup> h <sup>-1</sup> )Qvolumetric flow rate of required fresh air (m <sup>3</sup> h <sup>-1</sup> )Qvolumetric flow rate of required fresh air (m <sup>3</sup> h <sup>-1</sup> )Qvolumetric flow rate of required fresh air (m <sup>3</sup> h <sup>-1</sup> )Ppressure (Pa)Ppressure (Pa)Ppressure (Pa)Ppressure (Pa)Ppressure (Pa)Ppredicted percentage dissatisfied (%)PWCpresent worth of the cash flow of C (\$)Wabsolute humidity (kg <sub>moisture</sub> kg <sub>dry air</sub> <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aan                      | the height of dry channel (m)                                | in               | inlet air                                                 |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S <sup>M</sup> P<br>GMDH | group method of data handling type neural network            | fan              | fan                                                       |  |
| $\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H                        | cooler height (m)                                            | fun<br>fr        | friction                                                  |  |
| $n_c$ contractive incluster boundary (with $K^{-1}$ ) $O$ operatingiinflation rateO1operating in the first year $l_d$ insulation ( $m^2 K W^{-1}$ ) $out$ outlet (product) air $I_R$ resale income (\$) $PE$ purchase of equipmentkconductive heat transfer coefficient ( $W m^{-1} K^{-1}$ ) $rel$ relativeLchannel length (m)sasupply airL*dimensionless length of the channelsensiblesensibleLCClife-cycle cost (\$)thermostat thermostatmthe mass flow rate ( $kg s^{-1}$ ) $w$ waterMmetabolic rate ( $W m^{-2}$ )waworking airMCIECMaiotsenko (M-cycle) indirect evaporative cooler $Wcilling Maiotsenko (M-cycle)$ indirect evaporative coolerNSGA-IInon-dominated sorted genetic algorithm 2Greek symbolsQvolumetric flow rate of required fresh air ( $m^3 h^{-1}$ ) $\Delta$ differencePpressure (Pa) $\zeta$ minor loss coefficientPawater vapor partial pressure (Pa) $\eta$ efficiencyPMVpredicted mean vote $\nu$ kinematics viscosity ( $m^2 s^{-1}$ )POFPareto optimal frontier $\rho$ density ( $kg m^{-3}$ )PPDpredicted percentage dissatisfied (%) $\phi$ relative humidity ( $kg_{moisture} kg_{dry air}^{-1}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h                        | convective heat transfer coefficient ( $W m^{-2} K^{-1}$ )   | )'<br>O          | operating                                                 |  |
| $I_{d} = Initial on Tate and the first year of the operating in the first year of t$                                                                                                                                                                                                                                       | i i                      | inflation rate                                               | 01               | operating in the first year                               |  |
| $\begin{array}{cccc} I & \text{instration (in KW )} & \text{out} & \text{outer (product) an} \\ I_R & \text{resale income ($)} & PE & \text{purchase of equipment} \\ k & \text{conductive heat transfer coefficient (Wm^{-1}K^{-1})} & rel & \text{relative} \\ L & \text{channel length (m)} & sa & \text{supply air} \\ L^* & \text{dimensionless length of the channel} & sensible & sensible \\ LCC & \text{life-cycle cost ($)} & thermostat & thermostat \\ \dot{m} & \text{the mass flow rate (kg s^{-1})} & w & water \\ M & \text{metabolic rate (Wm^{-2})} & wa & working air \\ MCIEC & Maisotsenko (M-cycle) indirect evaporative cooler \\ NSGA-II & non-dominated sorted genetic algorithm 2 & Greek symbols \\ Q & volumetric flow rate (m^3 h^{-1}) & \Delta & \text{difference} \\ P & pressure (Pa) & \zeta & \text{minor loss coefficient} \\ P_a & water vapor partial pressure (Pa) & \eta & efficiency \\ PMV & predicted mean vote & v & kinematics viscosity (m^2 s^{-1}) \\ POF & Pareto optimal frontier & \rho & density (kg m^{-3}) \\ PPD & predicted percentage dissatisfied (%) & \phi & relative humidity (%) \\ PW_C & present worth of the cash flow of C ($) & \omega & absolute humidity (kgmoisture kgdry air^{-1}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ι<br>Τ.                  | insulation $(m^2 K W^{-1})$                                  | out              | outlet (product) air                                      |  |
| $I_R$ result intoine (s) $I_L$ putchase of equipment $k$ conductive heat transfer coefficient (W m <sup>-1</sup> K <sup>-1</sup> ) $rel$ relative $L$ channel length (m) $sa$ supply air $L^*$ dimensionless length of the channel $sensible$ sensible $LCC$ life-cycle cost (\$)thermostatthermostat $m$ the mass flow rate (kg s <sup>-1</sup> ) $w$ water $M$ metabolic rate (W m <sup>-2</sup> ) $wa$ working air $MCIEC$ Maisotsenko (M-cycle) indirect evaporative cooler $Greek symbols$ $NSGA-II$ non-dominated sorted genetic algorithm 2 $Greek symbols$ $Q$ volumetric flow rate of required fresh air (m <sup>3</sup> h <sup>-1</sup> ) $\Delta$ difference $P$ pressure (Pa) $\zeta$ minor loss coefficient $P_a$ water vapor partial pressure (Pa) $\eta$ efficiency $PMV$ predicted mean vote $\nu$ kinematics viscosity (m <sup>2</sup> s <sup>-1</sup> ) $POF$ Pareto optimal frontier $\rho$ density (kg m <sup>-3</sup> ) $PPD$ predicted percentage dissatisfied (%) $\phi$ relative humidity (kg <sub>moisture</sub> -kg <sub>dry air</sub> <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I <sub>cl</sub>          | resola income (\$)                                           | DE               | purchase of equipment                                     |  |
| kconductive near transfer coefficient (will K f)refrefailiveLchannel length (m)sasupply airL*dimensionless length of the channelsensiblesensibleLCClife-cycle cost (\$)thermostatthermostatmthe mass flow rate (kg s <sup>-1</sup> )wwaterMmetabolic rate (W m <sup>-2</sup> )waworking airMCIECMaisotsenko (M-cycle) indirect evaporative coolerGreek symbolsQvolumetric flow rate (m <sup>3</sup> h <sup>-1</sup> )Greek symbolsQvolumetric flow rate of required fresh air (m <sup>3</sup> h <sup>-1</sup> ) $\Delta$ differencePpressure (Pa) $\gamma$ efficiencyPMVpredicted mean vote $\nu$ kinematics viscosity (m <sup>2</sup> s <sup>-1</sup> )POFPareto optimal frontier $\rho$ density (kg m <sup>-3</sup> )PPDpredicted percentage dissatisfied (%) $\phi$ relative humidity (%)PWcpresent worth of the cash flow of C (\$) $\omega$ absolute humidity (kgmoisture kgdry air <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IR<br>Ir                 | conductive heat transfer coefficient $(Mm^{-1}K^{-1})$       | rol              | relative                                                  |  |
| LStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStdStd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | к<br>т                   | conductive field transfer coefficient (will K)               | 50               |                                                           |  |
| Lcontraction between the chainersensibleLCClife-cycle cost (\$)the remostat $\dot{m}$ the mass flow rate (kg s <sup>-1</sup> ) $w$ Mmetabolic rate (W m <sup>-2</sup> ) $wa$ MCIECMaisotsenko (M-cycle) indirect evaporative coolerNSGA-IInon-dominated sorted genetic algorithm 2Greek symbolsQvolumetric flow rate (m <sup>3</sup> h <sup>-1</sup> ) $\Delta$ Qavolumetric flow rate of required fresh air (m <sup>3</sup> h <sup>-1</sup> ) $\Delta$ Ppressure (Pa) $\zeta$ Pawater vapor partial pressure (Pa)PMVpredicted mean vote $v$ POFPareto optimal frontier $\rho$ PDDpredicted percentage dissatisfied (%) $\phi$ PWCpresent worth of the cash flow of C (\$) $\omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | dimensionless length of the channel                          | sansibla         | songible                                                  |  |
| Inter-cycle cost (a)Intermostat mermostat mermostat $\dot{m}$ the mass flow rate (kg s <sup>-1</sup> ) $w$ water $M$ metabolic rate (W m <sup>-2</sup> ) $wa$ working air $MCIEC$ Maisotsenko (M-cycle) indirect evaporative cooler $wa$ working air $NSGA-II$ non-dominated sorted genetic algorithm 2 $Greek symbols$ $Q$ volumetric flow rate (m <sup>3</sup> h <sup>-1</sup> ) $\Delta$ difference $Q_a$ volumetric flow rate of required fresh air (m <sup>3</sup> h <sup>-1</sup> ) $\Delta$ difference $P$ pressure (Pa) $\zeta$ minor loss coefficient $P_a$ water vapor partial pressure (Pa) $\eta$ efficiency $PMV$ predicted mean vote $\nu$ kinematics viscosity (m <sup>2</sup> s <sup>-1</sup> ) $POF$ Pareto optimal frontier $\rho$ density (kg m <sup>-3</sup> ) $PPD$ predicted percentage dissatisfied (%) $\phi$ relative humidity (%) $PW_C$ present worth of the cash flow of C (\$) $\omega$ absolute humidity (kg <sub>moisture</sub> ·kg <sub>dry air</sub> <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | life cycle cost (\$)                                         | thermosta        | thermostat                                                |  |
| mthe mass now rate (kg s - )wwaterMmetabolic rate (W m <sup>-2</sup> )waworking airMCIECMaisotsenko (M-cycle) indirect evaporative coolerwaworking airNSGA-IInon-dominated sorted genetic algorithm 2Greek symbolsQvolumetric flow rate (m <sup>3</sup> h <sup>-1</sup> ) $\Delta$ difference $Q_a$ volumetric flow rate of required fresh air (m <sup>3</sup> h <sup>-1</sup> ) $\Delta$ difference $P$ pressure (Pa) $\zeta$ minor loss coefficient $P_a$ water vapor partial pressure (Pa) $\eta$ efficiencyPMVpredicted mean vote $\nu$ kinematics viscosity (m <sup>2</sup> s <sup>-1</sup> )POFPareto optimal frontier $\rho$ density (kg m <sup>-3</sup> )PPDpredicted percentage dissatisfied (%) $\phi$ relative humidity (%)PW <sub>C</sub> present worth of the cash flow of C (\$) $\omega$ absolute humidity (kg <sub>moisture</sub> ·kg <sub>dry air</sub> <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LCC<br>m                 | the mass flow rate (lag $e^{-1}$ )                           | w                | water                                                     |  |
| MInterabolic face (W III - )WaWorking anMCIECMaisotsenko (M-cycle) indirect evaporative coolerWaWorking anNSGA-IInon-dominated sorted genetic algorithm 2Greek symbolsQvolumetric flow rate ( $m^3 h^{-1}$ ) $\Delta$ differenceQ_avolumetric flow rate of required fresh air ( $m^3 h^{-1}$ ) $\Delta$ differencePpressure (Pa) $\zeta$ minor loss coefficientP_awater vapor partial pressure (Pa) $\eta$ efficiencyPMVpredicted mean vote $\nu$ kinematics viscosity ( $m^2 s^{-1}$ )POFPareto optimal frontier $\rho$ density (kg m^{-3})PPDpredicted percentage dissatisfied (%) $\phi$ relative humidity (%)PW_Cpresent worth of the cash flow of C (\$) $\omega$ absolute humidity (kg <sub>moisture</sub> ·kg <sub>dry air</sub> ^{-1})                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m<br>M                   | metabolic rate ( $Mm^{-2}$ )                                 | w                | wale                                                      |  |
| <i>NSGA-II</i> non-dominated sorted genetic algorithm 2 <i>Greek symbols</i> $Q$ volumetric flow rate $(m^3 h^{-1})$ $\Delta$ difference $Q_a$ volumetric flow rate of required fresh air $(m^3 h^{-1})$ $\Delta$ difference $P$ pressure (Pa) $\zeta$ minor loss coefficient $P_a$ water vapor partial pressure (Pa) $\eta$ efficiency <i>PMV</i> predicted mean vote $\nu$ kinematics viscosity $(m^2 s^{-1})$ <i>POF</i> Pareto optimal frontier $\rho$ density (kg m^{-3}) <i>PPD</i> predicted percentage dissatisfied (%) $\phi$ relative humidity (%) <i>PW<sub>C</sub></i> present worth of the cash flow of C (\$) $\omega$ absolute humidity (kg <sub>moisture</sub> ·kg <sub>dry air</sub> ^{-1})                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | Meiseteenke (Marale) indirect evenerative cooler             | wa               | working an                                                |  |
| NSCA-IInon-dominated sorted genetic algorithm 2Greek symbols $Q$ volumetric flow rate $(m^3 h^{-1})$ $\Delta$ difference $Q_a$ volumetric flow rate of required fresh air $(m^3 h^{-1})$ $\Delta$ difference $P$ pressure (Pa) $\zeta$ minor loss coefficient $P_a$ water vapor partial pressure (Pa) $\eta$ efficiencyPMVpredicted mean vote $\nu$ kinematics viscosity $(m^2 s^{-1})$ POFPareto optimal frontier $\rho$ density (kg m^{-3})PPDpredicted percentage dissatisfied (%) $\phi$ relative humidity (%) $PW_C$ present worth of the cash flow of C (\$) $\omega$ absolute humidity (kg <sub>moisture</sub> ·kg <sub>dry air</sub> ^{-1})                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MCIEC                    | maisotseliko (M-cycle) indirect evaporative cooler           | Creak am         | abolo                                                     |  |
| Qvolumetric flow rate (m n - ) $\Delta$ differenceQ_avolumetric flow rate of required fresh air (m <sup>3</sup> h <sup>-1</sup> ) $\Delta$ differencePpressure (Pa) $\zeta$ minor loss coefficientP_awater vapor partial pressure (Pa) $\eta$ efficiencyPMVpredicted mean vote $\nu$ kinematics viscosity (m <sup>2</sup> s <sup>-1</sup> )POFPareto optimal frontier $\rho$ density (kg m <sup>-3</sup> )PPDpredicted percentage dissatisfied (%) $\phi$ relative humidity (%)PW_Cpresent worth of the cash flow of C (\$) $\omega$ absolute humidity (kg <sub>moisture</sub> ·kg <sub>dry air</sub> <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NSGA-II                  | Non-dominated solved genetic algorithm 2 $(m^3 h^{-1})$      |                  | Greek symbols                                             |  |
| $Q_a$ volumetric flow rate of required fresh air (m n f) $\Delta$ difference $P$ pressure (Pa) $\zeta$ minor loss coefficient $P_a$ water vapor partial pressure (Pa) $\eta$ efficiency $PMV$ predicted mean vote $\nu$ kinematics viscosity (m <sup>2</sup> s <sup>-1</sup> ) $POF$ Pareto optimal frontier $\rho$ density (kg m <sup>-3</sup> ) $PPD$ predicted percentage dissatisfied (%) $\phi$ relative humidity (%) $PW_C$ present worth of the cash flow of C (\$) $\omega$ absolute humidity (kg <sub>moisture</sub> ·kg <sub>dry air</sub> <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q                        | volumetric flow rate (m h ) $(1 - 1)^{-1}$                   | •                | difference                                                |  |
| Ppressure (Pa) $\varsigma$ minor loss confidentP_awater vapor partial pressure (Pa) $\eta$ efficiencyPMVpredicted mean vote $v$ kinematics viscosity (m <sup>2</sup> s <sup>-1</sup> )POFPareto optimal frontier $\rho$ density (kg m <sup>-3</sup> )PPDpredicted percentage dissatisfied (%) $\phi$ relative humidity (%)PW_Cpresent worth of the cash flow of C (\$) $\omega$ absolute humidity (kg <sub>moisture</sub> ·kg <sub>dry air</sub> <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $Q_a$                    | volumetric flow rate of required fresh air (m n )            |                  | difference                                                |  |
| $P_a$ water vapor partial pressure (Pa) $\eta$ efficiency $PMV$ predicted mean vote $\nu$ kinematics viscosity (m² s <sup>-1</sup> ) $POF$ Pareto optimal frontier $\rho$ density (kg m <sup>-3</sup> ) $PPD$ predicted percentage dissatisfied (%) $\phi$ relative humidity (%) $PW_C$ present worth of the cash flow of C (\$) $\omega$ absolute humidity (kg <sub>moisture</sub> ·kg <sub>dry air</sub> <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P                        | pressure (Pa)                                                | ς                |                                                           |  |
| PMVpredicted mean vote $\psi$ kinematics viscosity (m <sup>-</sup> s <sup>-1</sup> )POFPareto optimal frontier $\rho$ density (kg m <sup>-3</sup> )PPDpredicted percentage dissatisfied (%) $\phi$ relative humidity (%) $PW_C$ present worth of the cash flow of C (\$) $\omega$ absolute humidity (kg <sub>moisture</sub> ·kg <sub>dry air</sub> <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $P_a$                    | water vapor partial pressure (Pa)                            | η                | Ellipsing the state $(m^2 - 1)$                           |  |
| POPPareto optimal frontier $\rho$ density (kg m °)PPDpredicted percentage dissatisfied (%) $\phi$ relative humidity (%)PW_Cpresent worth of the cash flow of C (\$) $\omega$ absolute humidity (kg <sub>moisture</sub> ·kg <sub>dry air</sub> <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PMV                      | predicted mean vote                                          | V                | kinematics viscosity (iii s )<br>density (i.e. $m^{-3}$ ) |  |
| PPDpredicted percentage dissatisfied (%) $\phi$ relative humidity (%) $PW_C$ present worth of the cash flow of C (\$) $\omega$ absolute humidity ( $kg_{moisture}$ : $kg_{dry air}^{-1}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | POF                      | Pareto optimal frontier                                      | ρ                | density (kg m <sup>°</sup> )                              |  |
| $PW_C$ present worth of the cash flow of C (\$) $\omega$ absolute humidity ( $kg_{moisture}kg_{dry air}^{-1}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PPD                      | predicted percentage dissatisfied (%)                        | φ                | relative numidity (%)                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $PW_C$                   | present worth of the cash flow of C (\$)                     | ω                | absolute humidity ( $kg_{moisture} kg_{dry air}$ )        |  |

velocity conditions experimentally. Although experimental measurements provide accurate results, they suffer from the cost of experiments. Developing a model is an alternative approach; however, a developed model must be validated with experimental data. If numerical or analytical models are validated using experimental data, they can be employed in the cases in which there is a lack of experimental data. The models have been obtained either by numerical methods or soft computing and statistical techniques (SCSTs). In the numerical modeling [15–19], different analytical methods such as the effectiveness-NTU method ( $\varepsilon$ -NTU) [16,18], the Eulerian-Lagrangian computational fluid dynamics (CFD) [15] and the finite difference method (FDM) [17,19] have been applied and the obtained numerical results have been validated against existing experimental data. Moreover, in the statistical modeling [5,7,20,21], the effective parameters have been determined and after extraction of enough data from experiments or numerical models, the modeling process has been conducted to transfer the data into analytical models [22]. Artificial neural networks (ANN) [20], group method of data handling (GMDH) [5,7,20], genetic programming (GP) [20], response surface methodology (RSM) [21], multiple linear regression (MLR) [20] and stepwise regression method (SRM) [6,20] are the statistical techniques by which MCIECs have been modeled so far. In Fig. 2, a graphical summary of the mentioned classification was presented.

From the point of view of the subject, the conducted studies about MCIECs were categorized into some groups. The largest group of studies is those research that the performances of the system are investigated under a variety of effective parameters such as inlet air conditions, the air flow velocity, the dimensions of the air flow passages, and working Download English Version:

# https://daneshyari.com/en/article/7159201

Download Persian Version:

https://daneshyari.com/article/7159201

Daneshyari.com