Energy Conversion and Management 122 (2016) 10-24

Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

Wolf pack hunting strategy for automatic generation control of an islanding smart distribution network $\stackrel{\text{\tiny{\pp}}}{\sim}$

Lei Xi^{a,b}, Zeyu Zhang^b, Bo Yang^c, Linni Huang^b, Tao Yu^{b,*}

^a College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China

^b School of Electric Power, South China University of Technology, Guangzhou 510641, China

^c Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650504, China

ARTICLE INFO

Article history: Received 1 March 2016 Received in revised form 22 April 2016 Accepted 15 May 2016

Keywords: Automatic generation control Islanding smart distribution network Wolf pack hunting Virtual consensus variable

ABSTRACT

As the conventional centralized automatic generation control (AGC) is inadequate to handle the everincreasing penetration of renewable energy and the requirement of plug-and-play of smart grid, this paper proposes a mixed homogeneous and heterogeneous multi-agent based wolf pack hunting (WPH) strategy to achieve a fast AGC power dispatch, optimal coordinated control, and electric power autonomy of an islanding smart distribution network (ISDN). A virtual consensus variable is employed to deal with the topology variation resulted from the excess of power limits and to achieve the plug-and-play of AGC units. Then an integrated objective of frequency deviation and short-term economic dispatch is developed, such that all units can maintain an optimal operation in the presence of load disturbances. Four case studies are undertaken to an ISDN with various distributed generations and microgrids. Simulation results demonstrate that WPH has a greater robustness and a faster dynamic optimization than that of conventional approaches, which can increase the utilization rate of the renewable energy and effectively resolve the coordination and electric power autonomy of ISDN.

© 2016 Published by Elsevier Ltd.

1. Introduction

Generally speaking, a higher randomness and uncertainty of the active power and load disturbance of smart distribution network (DN) will be resulted in by the ever-increasing penetration of distributed generations and active load integration. Consequently, a massive information gathering and high computational burden will be emerged in the energy management system (EMS) [1,2], which brings in many new problems and challenges to automatic generation control (AGC) [3,4] of islanding DN (IDN). As a result, it is necessary to study the multi-agent system (MAS) decentralized coordinated control of AGC for IDN [5,6].

AGC can be normally divided into two procedures: (a) The total power references tracking of AGC, and (b) the total power references dispatch into each unit through optimization. In practice, proportional-integral (PI) controller is widely used in the total

* Corresponding author.

power references tracking of AGC in an IDN. In order to further improve the adaptability and control performance of AGC, an online particle swarm optimization (PSO)-based fuzzy tuning approach was proposed for frequency control in an AC microgrid [7]. Moreover, bacterial foraging optimization (BFO), PSO, genetic algorithm (GA) [50], and conventional gradient descent algorithm were applied to simultaneously optimize all the control parameters of microgrids by [8]. On the other hand, reinforcement learning has been investigated by the authors to achieve a smart generation control (SGC) of interconnected power grids such that the AGC dynamic control performance can be improved [9–14]. However, the aforementioned literatures are all based on centralized control, which requires a large amount of remote information thus the control performance may be unsatisfactory with a relatively slow dynamic response [15,16].

Recently, many researches have been undertaken to design a decentralized control for smart grid. A decentralized control was developed to improve the performance of a single-phase grid-interfacing inverter on component level [17], which can merely improve the local performance of an inverter. Additionally, a passivity-based control was proposed by [18] to solve the integration of a single distributed generation unit, of which the storage function is difficult to be constructed and it can only improve the local performance of a generator. In our published work [19], a

^{*} This work was partially supported by The National Basic Research Program (973 Program) (Grant no. 2013CB228205) and The National Natural Science Foundation of China (Grant no. 51477055).

E-mail addresses: xilei2014@163.com (L. Xi), z_zeyu1991@163.com (Z. Zhang), yangbo_ac@outlook.com (B. Yang), 1029807957@qq.com (L. Huang), taoyu1@scut. edu.cn (T. Yu).

Nomenclature

	Constants		CC	С
	b _{ii}	the weight between v_i and v_i	MA	n
	ai	coefficient of the generation costs	ED	e
	b _i	coefficient of the generation costs	$DCEQ(\lambda)$	d
	Ci	coefficient of the generation costs	DWoLF-P	H
	α_i	dynamic coefficient of the generation costs under		с
		power disturbance	FR	f
	ßi	dynamic coefficient of the generation costs under	MAS-SCG	
	<i>P</i> 1	power disturbance	MAS-SG	Ν
	ν:	dynamic coefficient of the generation costs under	MAS-CC	Ν
	71	power disturbance	DN	d
		metric of $ \Lambda f $	IDN	i
	$^{\mu}$ 1 – $^{\mu}$	metric of the generation costs	ibit	1.
	$1 - \mu$	the discount factor	V 1-1	
	2	the trace-attenuation factor	<i>Variables</i>	
	n N	the Ω_{-} learning rate	$U(s_k, a_i)$	τ
	ú ú	a variable learning rate	3	С
	φ	a variable learning rate	ΔJ	a
	5	a specified positive constant	ω	e
	_		$\omega_{i,\text{lower}}$	n
	Set		$\omega_{i,upper}$	n
	Α	the set of action	$\omega_{i, { m virtual}}$	t
	S	the set of state	S	t
	U	the set of mixed strategy	<i>s</i> ₀	t
	V	the set of node	visit(s _k)	t
	Ε	the set of edge		С
			$a_{\rm g}$	a
	Indices		a	а
	k	index of iteration	ρ_k	t
	i. i	index of agent running from 1 to n	ΔP_{Gi}	Α
	., ,		$V^{\pi*}(s)$	0
	Abbroviati	one	$\pi^*(s)$	0
	DI	proportional integral	R	r
		proportional-integral	$e_k(s, a)$	t
	PSU PEO	hastorial for a ring a stimization		S
	BFU	Dacterial foraging optimization	$d_{ii}[k]$	t
	EIVIS	energy management system	9[]	L
	AGC	automatic generation control	Xi	ť
	MAS	multi-agent system	1);	n
	GA	genetic algorithm	δ_{k}	t
	SGC	smart generation control	C:	t
	SARSA (λ)	state-action-reward-state-action (λ)	Control	t
	MDP	Markov decision process	T_{i}	Δ
	LFC	load frequency control	ΛP_{Σ}	t
	VPP	virtual power plant	A D ^{min}	т. т
	ISDN	islanding smart distribution network	$\Delta \Gamma_{Gi}$	ц. – t
	P _{Gi,actual}	the actual active power of the <i>i</i> th unit	ΔP_{Gi}	L.
	P _{Gi,plan}	the planned active power of the <i>i</i> th unit	ΔP_{error}	L.
	ΛP_{array}^{max}	the maximum tolerated power error of ISDN	D	ι.
	ΔP_{Ci}	AGC regulation power of the <i>i</i> th unit	Б I	V
	G/ O*	optimal function matrix	L	Ľ.
	х D	stochastic row matrix	6 0 ()	d
	R(si si	$a_{\rm e}$) the agent's reward function from state s, to s.	$Q_k(s, a)$	t
	$n(s_{K}, s_{K+1})$	$a_{k,j}$ the agent's reward function from state s_k to s_{k+1}		
	\ //рн	wolf nack hunting		
	**111	tion pack numming		
_				

EDeconomic dispatch $DCEQ(\lambda)$ decentralized correlated equilibrium $Q(\lambda)$ $DWoLF-PHC(\lambda)$ decentralized win or learn fast policy his climbing (λ) FRfrequency regulationMAS-SCGMAS stochastic consensus gameMAS-SGMAS stochastic gameMAS-CCMAS collaborative consensusDNdistribution networkIDNislanding distribution network
Variables $\hat{U}(s_k, a_i)$ the average mixed strategy ε convergence coefficient Δf absolute value of the frequency deviation ω equal incremental rate of generation costs $\varpi_{i,lower}$ minimum of the <i>i</i> th agent consensus variable $\varpi_{i,uipper}$ maximum of the <i>i</i> th agent consensus variable $\varpi_{i,virtual}$ the virtual consensus variable s the state of system in MAS-SG s_0 the initial statevisit(s_k)the total number of state s_k from the initial state to the current state a_g a greedy action a action ρ_k the Q-function error of the agent at the <i>k</i> th iteration ΔP_{Gi} AGC regulation power of the <i>i</i> th unit $V^{\pi*}(s)$ optimal strategy R reward $e_k(s, a)$ the eligibility trace at the <i>k</i> th iteration used under state a_g and action a $d_{ij}[k]$ the (i,j) entry of the stochastic row mathe $D = [d_{ij}] \in R^{n \times n}$ in the <i>k</i> th communication x_i the state of the <i>i</i> th agent in MAS-CC v_i node δ_k the estimate of Q-function error C_i the generation costs of the <i>i</i> th unit C_{total} the total actual generation costs T_{step} AGC decision time AP_{Ci} the total approxemence $A_{ij}^{(i)}$ the maximal adjustable capacity $A_{ij}^{(i)}$ the maximal adjustable capacity $A_{ij}^{(i)}$ the maximal adjustable capacity

multi-step $Q(\lambda)$ was designed for optimal power flow of large-scale power grid. It is a single agent based approach, which needs a large amount of computation time as the agent number increases. Moreover, multiple equilibriums may emerge which would result in an undesired system instability. In contrast, this paper develops a robust decentralized controller of AGC, which can achieve a coordinated control between multi agents to improve the global performance of the whole system with an easy implementation. It is a multiple agents based approach which consumes a much smaller amount of computation time as the agent number increases compared to that of [19]. Furthermore, it only has a single equilibrium thus the system stability can be maintained. However, the above methods haven't taken the collaborative consensus (CC) of decentralized control systems into account, which cannot achieve a smart collaboration as each region is independent.

In MAS, a consensus among all agents is defined by a same selection of objective variable value through information exchanging with adjacent agents [20]. In the past decades, the application

Download English Version:

https://daneshyari.com/en/article/7160377

Download Persian Version:

https://daneshyari.com/article/7160377

Daneshyari.com