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a b s t r a c t

The present work investigates the feasibility of solar heating and cooling (SHC) absorption systems based
on combining three types of LiBr–H2O absorption chillers (single-, double-, and triple-effect) with com-
mon solar thermal collectors available on the market. A single-effect chiller is coupled with evacuated
tube collectors (ETCs) – SHC1. A double-effect chiller is integrated with parabolic trough collectors
(PTCs), linear Fresnel micro-concentrating collectors (MCTs) and evacuated flat plate collectors (EFPCs)
respectively – SHC2, SHC3, and SHC4. PTCs are employed to provide high-temperature heat to a triple-
effect absorption chiller (SHC5). Although triple-effect chillers have been around for a while, this paper
represents the first system-level analysis of these chillers coupled with high-temperature solar concen-
trating collectors for air-conditioning applications. A simulation model for each configuration is
developed in a transient system simulation environment (TRNSYS 17). Furthermore, a unique, compre-
hensive perspective is given by investigating the impact of characteristic solar beam radiation to global
radiation ratios on the techno-economic performance of the proposed SHC plants for a wide variety of
climatic regions worldwide. The results of parametric study suggest that a storage volume of around
70 L/m2 is a good choice for SHC1, while 40–50 L/m2 storage capacity is sufficient for the other configu-
rations (SHC2 to SHC5). The simulation results reveal that when the fraction of direct normal irradiance
(DNI) is less than 50%, SHC2, SHC3, and SHC5 require larger collector area compared to SHC1, showing
there is no advantage in using concentrating collector powered multi-effect chillers over solar single-
effect chillers in climates with low DNI level. However, in climates with DNI fractions above 60%, the
smallest solar field is achieved by SHC5, followed by SHC2. SHC4, which benefits from both relatively high
COP of double-effect chiller and the diffuse component in the solar field, results in the most reasonable
trade-off between energetic and economic performance of the system in a wide range of climatic
conditions.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Air-conditioning demand in many countries accounts for about
50% of the energy consumption in buildings – which is mainly sup-
plied by conventional fossil fuels [1,2]. The use of renewable
energy technologies in buildings can reduce fossil fuel consump-
tion, and as a result mitigate their environmental impacts [3,4].
Solar cooling is a promising, clean alternative which has the advan-
tage of being in phase with the buildings’ cooling demand [5–7].
The available technologies on the market for thermally driven cool-
ing systems are absorption and adsorption chillers, solid and liquid

desiccant cooling systems, and ejector refrigeration cycles [8]. Of
these, absorption chillers are considered as the most desirable
method for harnessing solar thermal energy due to their reliability
and higher efficiency. In addition, absorption chillers can be avail-
able for large-scale applications and their cost is lower than the
rest of thermally-driven air-conditioning systems for such uses
[9,10]. There are three types of absorption chillers commercially
available on the market � single-, double-, and triple-effect chil-
lers. The advantage of moving toward a higher effect cycle is to
enhance the COP of the chiller, if a high temperature heat source
is available. The most common working fluid pair used in
absorption chillers for air-conditioning applications is lithium bro-
mide–water (LiBr–H2O), where LiBr is the absorbent and water is
the refrigerant [9]. The driving heat source temperature for
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single-effect chillers is about 80–100 �C, while their COP is limited
to around 0.7 [11]. Double- and triple-effect chillers, on the other
hand, require driving temperatures of around 180–240 �C, and
can reach COPs of up to 1.4 and 1.8, respectively [11].

The majority of solar absorption chillers installed around the
world are based on single-effect chillers and low-temperature solar
thermal flat plate or evacuated tube collectors (FPCs and ETCs)
[12,13]. This configuration is usually considered as the most
promising design in European climates [14]. The main drawback
of solar single-effect chillers is the low COP of the chiller, requiring
a large collector area to provide the thermal energy demand. In
addition to the cost of large collector areas, this may be a signifi-
cant limiting factor for the use of such systems in buildings with
limited available rooftop area.

The combination of high-temperature solar thermal collectors
and multi-effect absorption chillers is becoming more attractive
due to their higher COP compared to single-effect chillers
[15,16]. This means that the multi-effect chillers require less solar
thermal energy (and potentially less collector area) to supply a
given amount of cooling. However, they require very high driving
temperatures which can only be achieved by more expensive col-
lectors and pipework. If concentrating collectors are used, they
have a lower solar gain per unit area because they can only utilize
the direct normal irradiance (DNI) as opposed to FPCs and ETCs
which can also harness solar diffuse radiation [17]. This disadvan-
tage may be partially compensated by employing tracking systems,
but these require regular maintenance, especially in dusty environ-
ments. Therefore, it is not clear if solar-powered multi-effect

Nomenclature

A heat transfer surface area (m2)
a characteristic coefficient (–)
Aa aperture area (m2)
Ar receiver area (m2)
c1 first-order heat loss coefficient (W/m2 K)
c2 second-order heat loss coefficient (W/m2 K2)
c3 wind speed dependence of heat losses (J/m3 K)
c4 long-wave irradiance dependence of heat losses (–)
c5 the collector effective thermal capacitance (J/m2 K)
c6 wind dependence of the zero loss efficiency (s/m)
cCO2 CO2 emission penalty cost (USD/tonne CO2�e)
CDE carbon dioxide emission (tonne)
CDEC carbon dioxide emission cost (USD)
cE unit cost of electricity (USD/kW h)
CI capital investment cost (USD)
cNG unit cost of natural gas (USD/GJ)
COP coefficient of performance (–)
Cop operating cost (USD)
cp specific heat at constant pressure (kJ/kg K)
CR concentration ratio (–)
DNI direct normal irradiance (kW h/m2)
E energy (kW h)
e characteristic coefficient (–)
EF emission factor (kg CO2/kW h)
EFPC evacuated flat plate collector
EL long-wave irradiance (W/m2)
ETC evacuated tube collector
F0 collector efficiency factor (–)
F 0ðsaÞn collector zero loss efficiency at normal incidence (–)
GHI global horizontal irradiance (kW h/m2)
Gt global irradiance on the tilted collector (W/m2)
k thermal conductivity (W/m K)
K(h) incidence angle modifier (–)
M mass (kg)
_m mass flow rate (kg/s)
MCT micro-concentrating collector
NTU number of transfer units
PEC primary energy consumption (kW h, GW h)
PEF primary energy factor (–)
PTC parabolic trough collector
_Q heat transfer rate (kW)
r characteristic coefficient (kW)
R2 coefficient of determination
s characteristic coefficient (kW �C�1)
SF solar fraction
SPBP simple payback period (year)
T temperature (�C)
t time (s)
U overall heat loss coefficient (W/m2 K)

u wind velocity (m/s)
UL collector overall heat loss coefficient (W/m2 K)
USD US dollar
V specific volume (L/m2)
DDT 0 characteristic temperature difference (�C)

Greek symbols
b collector slope (�)
c collector azimuth angle (�)
cs solar azimuth angle (�)
d thickness (m)
g thermal efficiency (–)
h solar incidence angle on the collector (�)
hz solar zenith angle (�)
r Stefan–Boltzmann constant (W/m2 K4)

Subscripts
a air, ambient
AC absorber–condenser
ACH absorption chiller
AH auxiliary heater
aux auxiliary
avg average
b beam
C cooling
CHW chilled water
Config. configuration
CT cooling tower
CTRL controller
CW cooling water
d diffuse
DV diverting valve
E electricity, evaporator
G generator
H heating
HW hot water
L load
l linear, longitudinal
MV mixing valve
NG natural gas
P pump
PRV pressure relief valve
q quadratic
SC solar collector
SCW solar collector water
ST storage tank
t transversal
u useful
w water
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