Energy Conversion and Management 114 (2016) 258-277

Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

A systematic parametric study and feasibility assessment of solar-assisted single-effect, double-effect, and triple-effect absorption chillers for heating and cooling applications

Ali Shirazi^{a,*}, Robert A. Taylor^a, Stephen D. White^b, Graham L. Morrison^a

^a School of Mechanical and Manufacturing Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia ^b Commonwealth Scientific and Industrial Research Organization (CSIRO) Energy Centre, Newcastle, New South Wales 2304, Australia

ARTICLE INFO

Article history: Received 24 November 2015 Accepted 28 January 2016

Keywords: Solar heating and cooling Absorption chiller Single-effect Double-effect Triple-effect TRNSYS

ABSTRACT

The present work investigates the feasibility of solar heating and cooling (SHC) absorption systems based on combining three types of LiBr-H₂O absorption chillers (single-, double-, and triple-effect) with common solar thermal collectors available on the market. A single-effect chiller is coupled with evacuated tube collectors (ETCs) - SHC1. A double-effect chiller is integrated with parabolic trough collectors (PTCs), linear Fresnel micro-concentrating collectors (MCTs) and evacuated flat plate collectors (EFPCs) respectively – SHC2, SHC3, and SHC4. PTCs are employed to provide high-temperature heat to a tripleeffect absorption chiller (SHC5). Although triple-effect chillers have been around for a while, this paper represents the first system-level analysis of these chillers coupled with high-temperature solar concentrating collectors for air-conditioning applications. A simulation model for each configuration is developed in a transient system simulation environment (TRNSYS 17). Furthermore, a unique, comprehensive perspective is given by investigating the impact of characteristic solar beam radiation to global radiation ratios on the techno-economic performance of the proposed SHC plants for a wide variety of climatic regions worldwide. The results of parametric study suggest that a storage volume of around 70 L/m² is a good choice for SHC1, while 40-50 L/m² storage capacity is sufficient for the other configurations (SHC2 to SHC5). The simulation results reveal that when the fraction of direct normal irradiance (DNI) is less than 50%, SHC2, SHC3, and SHC5 require larger collector area compared to SHC1, showing there is no advantage in using concentrating collector powered multi-effect chillers over solar singleeffect chillers in climates with low DNI level. However, in climates with DNI fractions above 60%, the smallest solar field is achieved by SHC5, followed by SHC2. SHC4, which benefits from both relatively high COP of double-effect chiller and the diffuse component in the solar field, results in the most reasonable trade-off between energetic and economic performance of the system in a wide range of climatic conditions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Air-conditioning demand in many countries accounts for about 50% of the energy consumption in buildings – which is mainly supplied by conventional fossil fuels [1,2]. The use of renewable energy technologies in buildings can reduce fossil fuel consumption, and as a result mitigate their environmental impacts [3,4]. Solar cooling is a promising, clean alternative which has the advantage of being *in phase* with the buildings' cooling demand [5–7]. The available technologies on the market for thermally driven cooling systems are absorption and adsorption chillers, solid and liquid

* Corresponding author. E-mail address: a.shirazi@unsw.edu.au (A. Shirazi). desiccant cooling systems, and ejector refrigeration cycles [8]. Of these, absorption chillers are considered as the most desirable method for harnessing solar thermal energy due to their reliability and higher efficiency. In addition, absorption chillers can be available for large-scale applications and their cost is lower than the rest of thermally-driven air-conditioning systems for such uses [9,10]. There are three types of absorption chillers commercially available on the market – single-, double-, and triple-effect chillers. The advantage of moving toward a higher effect cycle is to enhance the COP of the chiller, if a high temperature heat source is available. The most common working fluid pair used in absorption chillers for air-conditioning applications is lithium bromide–water (LiBr–H₂O), where LiBr is the absorbent and water is the refrigerant [9]. The driving heat source temperature for

Nomenclature

Α	heat transfer surface area (m ²)
а	characteristic coefficient (–)
A_a	aperture area (m ²)
A_r	receiver area (m ²)
<i>c</i> ₁	first-order heat loss coefficient (W/m ² K)
C ₂	second-order heat loss coefficient $(W/m^2 K^2)$
C3	wind speed dependence of heat losses $(J/m^3 K)$
<i>C</i> ₄	long-wave irradiance dependence of heat losses (-)
C ₅	the collector effective thermal capacitance (J/m ² K)
<i>c</i> ₆	wind dependence of the zero loss efficiency (s/m)
$c_{\rm CO_2}$	CO_2 emission penalty cost (USD/tonne CO_{2-e})
CDĒ	carbon dioxide emission (tonne)
CDEC	carbon dioxide emission cost (USD)
C_E	unit cost of electricity (USD/kW h)
CI	capital investment cost (USD)
C _{NG}	unit cost of natural gas (USD/GJ)
COP	coefficient of performance (–)
$C_{\rm op}$	operating cost (USD)
c_p	specific heat at constant pressure (kJ/kg K)
CR	concentration ratio (-)
DNI	direct normal irradiance (kW h/m ²)
Ε	energy (kW h)
е	characteristic coefficient (-)
EF	emission factor (kg CO ₂ /kW h)
EFPC	evacuated flat plate collector
E_L	long-wave irradiance (W/m²)
ETC	evacuated tube collector
$F'_{.}$	collector efficiency factor (-)
$F'(\tau \alpha)_n$	collector zero loss efficiency at normal incidence (–)
GHI	global horizontal irradiance (kW h/m ²)
G_t	global irradiance on the tilted collector (W/m^2)
k	thermal conductivity (W/m K)
$K(\theta)$	incidence angle modifier (–)
M	mass (kg)
m	mass flow rate (kg/s)
MCI	micro-concentrating collector
	number of transfer units
PEC	primary energy consumption (kw n, Gw n)
PEF	primary energy factor (-)
ò	hast transfor rate (1141)
Q r	characteristic coefficient (kW)
і р ²	coefficient of determination
r s	characteristic coefficient ($kW \circ C^{-1}$)
SE	solar fraction
SPRP	simple payback period (year)
T	temperature (°C)
t	time (s)
Ŭ	overall heat loss coefficient $(W/m^2 K)$
-	

u wind velocity (m/s) U_L collector overall heat loss coefficient (W/m² K)

- USD US dollar
- *V* specific volume (L/m^2)
- $\Delta \Delta T'$ characteristic temperature difference (°C)

Greek symbols

- β collector slope (°)
- γ collector azimuth angle (°)
- γ_s solar azimuth angle (°)
- δ thickness (m)
- η thermal efficiency (–)
- θ solar incidence angle on the collector (°)
- θ_z solar zenith angle (°)
- σ Stefan–Boltzmann constant (W/m² K⁴)

Subscripts

Subscript	5
а	air, ambient
AC	absorber–condenser
ACH	absorption chiller
AH	auxiliary heater
aux	auxiliary
avg	average
b	beam
С	cooling
CHW	chilled water
Config.	configuration
СТ	cooling tower
CTRL	controller
CW	cooling water
d	diffuse
DV	diverting valve
Ε	electricity, evaporator
G	generator
Н	heating
HW	hot water
L	load
1	linear, longitudinal
MV	mixing valve
NG	natural gas
Р	pump
PRV	pressure relief valve
q	quadratic
SC	solar collector
SCW	solar collector water
ST	storage tank
t	transversal
и	useful
w	water

single-effect chillers is about 80–100 °C, while their COP is limited to around 0.7 [11]. Double- and triple-effect chillers, on the other hand, require driving temperatures of around 180–240 °C, and can reach COPs of up to 1.4 and 1.8, respectively [11].

The majority of solar absorption chillers installed around the world are based on single-effect chillers and low-temperature solar thermal flat plate or evacuated tube collectors (FPCs and ETCs) [12,13]. This configuration is usually considered as the most promising design in European climates [14]. The main drawback of solar single-effect chillers is the low COP of the chiller, requiring a large collector area to provide the thermal energy demand. In addition to the cost of large collector areas, this may be a significant limiting factor for the use of such systems in buildings with limited available rooftop area.

The combination of high-temperature solar thermal collectors and multi-effect absorption chillers is becoming more attractive due to their higher COP compared to single-effect chillers [15,16]. This means that the multi-effect chillers require less solar thermal energy (and potentially less collector area) to supply a given amount of cooling. However, they require very high driving temperatures which can only be achieved by more expensive collectors and pipework. If concentrating collectors are used, they have a lower solar gain per unit area because they can only utilize the direct normal irradiance (DNI) as opposed to FPCs and ETCs which can also harness solar diffuse radiation [17]. This disadvantage may be partially compensated by employing tracking systems, but these require regular maintenance, especially in dusty environments. Therefore, it is not clear if solar-powered multi-effect Download English Version:

https://daneshyari.com/en/article/7161039

Download Persian Version:

https://daneshyari.com/article/7161039

Daneshyari.com