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a b s t r a c t

This paper presents an operation optimization method and demonstrates its application to a proton
exchange membrane fuel cell system. A constrained optimization problem was formulated to maximize
the efficiency of a fuel cell system by incorporating practical models derived from actual operations of the
system. Empirical and semi-empirical models for most of the system components were developed based
on artificial neural networks and semi-empirical equations. Prior to system optimizations, the developed
models were validated by comparing simulation results with the measured ones. Moreover, sensitivity
analyses were performed to elucidate the effects of major operating variables on the system efficiency
under practical operating constraints. Then, the optimal operating conditions were sought at various sys-
tem power loads. The optimization results revealed that the efficiency gaps between the worst and best
operation conditions of the system could reach 1.2–5.5% depending on the power output range. To verify
the optimization results, the optimal operating conditions were applied to the fuel cell system, and the
measured results were compared with the expected optimal values. The discrepancies between the mea-
sured and expected values were found to be trivial, indicating that the proposed operation optimization
method was quite successful for a substantial increase in the efficiency of the fuel cell system.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fuel cells have been actively studied for the last several decades
because they have been regarded as the most promising alterna-
tives to conventional power generation systems such as internal
combustion engines and gas turbines [1,2]. Several types of fuel
cells, including solid oxide fuel cells (SOFCs), phosphoric acid fuel
cells (PAFCs), molten carbonate fuel cells (MCFCs), direct methanol
fuel cells (DMFCs), alkaline fuel cells (AFCs), and proton exchange
membrane (PEM) fuel cells, have been commercialized for various
applications [3]. Their working principles, advantages and disad-
vantages have been well explained in various references including
a textbook [4]. Among these, PEM fuel cells are suitable for both
stationary and transportation applications such as residential
power generators, cars, buses, forklifts, bicycles, and watercraft
because they offer many advantages, including high efficiencies,
high power densities, short startup times, and low emissions of
pollutants [5].

As fuel cell systems have spread, the need for their operational
optimization to heighten performance or reduce operating costs
has gained increased attention. To maximize the efficiency of a fuel
cell system, and thereby minimize its operating cost, it is essential
that it operates near its optimal operating conditions. This can be
usually achieved by performing operation optimization techniques
based on mathematical models [6]. However, the model-based
optimization of a fuel cell system is a challenging task because
accurate models for all its components must be available in order
to find real optimal operating conditions that will deliver a sub-
stantial improvement in performance. A number of papers dealing
with the operation optimizations of fuel cells have been published
in the open literature. However, most have focused on the opti-
mization of single components [7–12] or sub-systems [13–15]
rather than complete systems [16–22].

A considerable number of papers on the operation optimization
of single fuel cells or sub-systems have been published. Mawardi
et al. [7] proposed a model-based optimization to maximize the
power density of a single PEM fuel cell. Meidanshahi and Karimi
[8] performed an optimization study using a one-dimensional
dynamicmodel for a single PEM fuel cell. Zhang et al. [9] determined
the optimal operating temperature of a high-temperature PEM fuel
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cell by considering its performance, CO tolerance, and durability.
Kanani et al. [10] used a response surface method to maximize the
power output of a single PEM fuel cell. Ni et al. [11] carried out a
parametric study using an electrochemical model to elucidate the
effects of operating variables on the performance of a single SOFC.
Tafaoli-Masoule et al. [12] employed a genetic algorithmand a quasi
two-dimensional, isothermalmodel to determine the optimal oper-
ating temperature and pressure of a single DMFC. Subramanyan
et al. [13] performed a multi-objective optimization for a hypothet-
ical SOFC–PEM hybrid sub-system both to minimize the CO2 emis-
sion and to maximize the performance. Caliandro et al. [14]
presented a multi-objective optimization for a SOFC–GT (gas tur-
bine) hybrid sub-system both to maximize the efficiency and to
minimize the capital costs. Ranjbar et al. [15] analyzed the effects
of operating variables on the energy and exergy efficiencies of a
hybrid SOFC sub-system, using a zero-dimensional mathematical
model.

Several papers on system-level operation optimizations of PEM
fuel cells have appeared in the open literature. Godat and Marechal
[16] performed a simulation study to find the optimal process
structure and operating conditions for a stationary fuel cell system
consisting of a PEM fuel cell stack and fuel processing units. They
analyzed the sensitivity of the major decision parameters (the
steam-to-carbon ratio, reforming and cell temperatures, and fuel
utilization) on the overall efficiency of the fuel cell system. Bao
et al. [17] carried out an optimization study for a hypothetical
PEM fuel cell system, using a hybrid model that combined a
neural-network model with a first-principles model, to find the
optimal operating conditions that maximized net power genera-
tion. The optimal values of two operating variables (the air stoi-
chiometry and cathode outlet pressure) were sought using a
genetic algorithm under three different configurations of the

air-supply system. Wu et al. [18] presented an optimization
approach to find the optimal operating conditions for a 25-cm2 sin-
gle PEM fuel cell coupled with a hypothetical compressor and a
humidifier. They employed a meta-modeling approach in which
the input-output relations were approximated with radial basis
functions (RBFs) using the data obtained from a simulator, to
reduce the computational burden in locating an optimal solution.
Four decision variables—the cell temperature, cathode stoichiome-
try, cathode gas pressure, and cathode relative humidity—were
sought under ideal and realistic system assumptions after accom-
plishing a model validation for the fuel cell. Hasikos et al. [19]
adopted a dynamic first-principles model, which was originally
proposed by Pukrushpan et al. [23], as a hypothetical PEM fuel cell
system composed of a stack and auxiliary units to generate opera-
tional data for optimizations. A meta-modeling approach was
employed to build the optimization models from the operational
data using an RBF neural network. They formulated an optimiza-
tion problem to minimize the stack current at a given power
demand, and then the optimal operating conditions were used as
set-points for the dynamic matrix controls (DMCs) of the hypothet-
ical system. Wishart et al. [20] performed a system-level optimiza-
tion for an experimental system comprising a Ballard Mark IV fuel
cell stack, a compressor, and pumps. They demonstrated two dif-
ferent optimization cases to find the optimal operating conditions
for vehicular and stationary applications. Mert et al. [21] presented
an optimization of a PEM fuel cell system for vehicular applica-
tions. They carried out a multi-objective optimization of the vehic-
ular fuel cell system both to maximize the power output, energy,
and exergy efficiencies and to minimize the cost of the produced
work. A simple electrochemical model for a Ballard XcellsisTM HY-
80 fuel cell engine was employed for the optimization. Fran-
gopoulos and Nakos [22] performed optimization simulations for

Nomenclature

b bias vector in an artificial neural network model
Cpw heat capacity of the cooling water (4.186 kJ kg�1 K�1).
F flow rate (SLPM)
FstoicH2

stoichiometric flow rate of hydrogen entering the stack
(SLPM)

Fpurge purge gas flow rate from the stack (SLPM)
f transfer function of an artificial neural network modeleF Faraday constant (96,485 C mol�1)
g transfer function of an artificial neural network model
I current (A)
J objective function (%)
MWa molecular weight of air (28.97 kg kg-mol�1)
Ns number of cells in the stack
P pressure (gauge pressure in kPa)
Pa discharge pressure of the air from the air blower (gauge

pressure in kPa)
Pe ambient pressure (gauge pressure in kPa)
R universal gas constant (8.314 J mol�1 K�1)

RMSE root mean squared error defined by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ŷi � yið Þ2=n
q

where n is the number of measurements, yi the mea-
sured variable, and ŷi the predicted variable

R2 coefficient of determination
T temperature (�C)
Vcell average cell voltage of the stack (V)
W power (kW)
Wdemand power demand of the electricity users (kW)

Greek letters
ca mean adiabatic exponent of air (1.402)
DT temperature difference (�C)

DTg–wa temperature difference between the exhaust gas and
the humidified air (�C)

g efficiency (%)
gfuel fuel utilization efficiency of the stack (%)
h vector of the decision variables
qw density of the cooling water (0.981 kg L�1)
x weight matrix in an artificial neural network model

Subscripts
A air blower
a air
B pump and other balance of plants
c cooling water
g exhaust gas exiting the cathode of the stack
P power converter
S stack
T fuel cell system
wa humidified (wet) air to the stack

Superscripts
HL hidden layer of an artificial neural network model
in power input
lb lower bound
max maximum
min minimum power
OL output layer of an artificial neural network model
out power output
ub upper bound
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