Energy Conversion and Management 106 (2015) 181-193

Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

Optimal joint scheduling of electrical and thermal appliances in a smart home environment

Elham Shirazi, Alireza Zakariazadeh, Shahram Jadid*

Center of Excellence for Power System Automation and Operation, Dept. of Electrical Engineering, Iran University of Science and Technology, P.O. Box: 1684613114, Tehran, Iran

ARTICLE INFO

Article history: Received 22 June 2015 Accepted 6 September 2015

Keywords: Smart home Appliance scheduling Renewable energy User comfort Energy management

ABSTRACT

With the development of home area network, residents have the opportunity to schedule their power usage in the home by themselves aiming at reducing electricity expenses. Moreover, as renewable energy sources are deployed in home, a home energy management system needs to consider both energy consumption and generation simultaneously to minimize the energy cost. In this paper, a smart home energy management model has been presented in which electrical and thermal appliances are jointly scheduled. The proposed method aims at minimizing the electricity cost of a residential customer by scheduling various type of appliances considering the residents consumption behavior, seasonal probability, social random factor, discomfort index and appliances starting probability functions. In this model, the home central controller receives the electricity price information, environmental factors data as well as the resident desired options in order to optimally schedule appliances including electrical and thermal. The scheduling approach is tested on a typical home including variety of home appliances, a small wind turbine, photovoltaic panel, combined heat and power unit, boiler and electrical and thermal storages over a 24-h period. The results show that the scheduling of different appliances can be reached simultaneously by using the proposed formulation. Moreover, simulation results evidenced that the proposed home energy management model exhibits a lower cost and, therefore, is more economical.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few decades, typically a power system is just dispatched generation sources since the vast majority of loads are not controllable. Moreover, flat rate of electricity price does not encourage the customers to schedule their energy usage. In a smart grid, the bidirectional data flow together with interoperability between houses and the grid have come up with possibility to optimize each customer's electricity usage and, simultaneously, improve entire system operation via peak reduction [1]. It is actually impractical to ask consumers to schedule their usage optimally since they are neither a system operator nor an economist. Hence, an autonomous load management technique is needed which requires little awareness of consumers for setting up and maintaining and then allow them to evaluate costs and benefits with various schedules.

A Home Energy Management System (HEMS) is definitely an integral part of the smart grid on the consumption side. The appliance commitment problem determines the best fit schedule for each device considering technical constraints and economic circumstances as well. In [2] a energy scheduling method aiming

at minimizing the overall cost of electricity and natural gas for a building operation over a time horizon while satisfying the energy balance and operating constraints of individual energy supply equipment and devices has been presented. An Expert Energy Management System (EEMS) has been proposed in [3] in order to schedule a micro grid. It has been used artificial neural network (ANN) to predict wind turbine generation. A simple yet effective load management system, along with renewable and non-renewable sources, was proposed in [4], in order to reduce electricity bill together with carbon emissions. In [5], a model for predictive controller in buildings considering hierarchical building control concept has been proposed. The energy supply and consumption levels were joined only by the thermal load. In [6], Agent-based strategies have been employed in order to schedule smart appliances. In comparison to the appliance commitment strategy, this method has some restrictions such as agent intelligence upon an appliance and also appliance coordination. In [7], the Point Estimate Method (PEM) has been exploited for modeling the solar and wind power uncertainties. The operation problem was solved via Particle Swarm Optimization (PSO) algorithm considering technical constraints. An optimal energy management model of a hybrid power supply system including solar panel, diesel generators and battery for off-grid applications has been presented in [8]. The authors in

^{*} Corresponding author. Tel.: +98 21 77491223; fax: +98 21 77491242.

E-mail addresses: elham_shirazi@elec.iust.ac.ir (E. Shirazi), zakaria@iust.ac.ir (A. Zakariazadeh), jadid@iust.ac.ir (S. Jadid).

Nomenclature

Abbreviations, superscripts and subscripts		
AC	air conditioning	
AMI	Advanced Metering Infrastructure	
ANN	artificial neural network	
CHP	Combined Heat and Power	
CN	Control Nodes	
CPP	Critical Peak Pricing	
CTA	Controllable Thermal Appliance	
DER	Distributed Energy Resource	
DG	Dispersed Generation	
DI	Discomfort Index	
EB	Energy Box	
ECA	Electrically Controllable Appliances	
ESS	Electrical Storage System	
EEMS	Expert Energy Management System	
EST	Earliest Starting Time	
HAN	Home Area Network	
HEMS	Home Energy Management System	
HG	Home Gateway	
HT	Heating Systems	
IHD	In-Home Display	
LB	Lower Bound	
LFT	Latest Finishing Time	
LOT	Length of Operation Time	
CC	Central Controller	
MILP	Mixed Integer Linear Programming	
NG	Natural Gas	
OCA	Optically Controllable Appliances	
PDF	Probability Density Function	
PHEV	Plug-in Hybrid Electric Vehicle	
PEM	Point Estimate Method	
PSO	Particle Swarm Optimization	
RTP	Real Time Price	
SM	Smart Meter	
TCA	Thermally Controllable Appliances	
TDM	Thermal Dynamic Modes	
TOU	Time Of Use	
TSS	Thermal Storage System	
UB	Upper Bound	
WSN	Wireless Sensor Network	
WTR	Water	

Parameters

1 urumete	.15	• t
V	wind speed (m/s)	
k	shape factor of Weibull distribution for wind speed	$T^{CLD, V}$
С	scale factor of Weibull distribution for wind speed	
EP_t^{WT}	wind turbine power output	C^{WIR}
EP_t^{PV}	solar cell power output	V_{ST}^{WIK}
η^{PV}	the conversion efficiency of solar cell array (%)	ι OUT
A^{PV}	solar cell array area (m ²)	L_t^{t}
I _t	the sun irradiation at time t (kW/m ²)	L t
T_t^{OUT}	the outside air temperature (°C)	T_{dm}^{fr}
β_1	scale factor of Weibull distribution for sun irradiation	T_{frz}^{aes}
β_2	scale factor of Weibull distribution for sun irradiation	des
α_1	shape factor of Weibull distribution for sun irradiation	T _{des}
α2	shape factor of Weibull distribution for sun irradiation	T_{des}^{IN}
η^{chp}	the CHP efficiency	T^{fr} .
$\mu^{chp,htp}$	heat-to-power ratio of CHP	min mfrz
EP_{\min}^{CHP}	the minimum electrical output of CHP	I'min
EP ^{CHP} max	the minimum electrical output of CHP	T_{\min}^{WIR}
ΔEP_{max}^{CHP}	the CHP electrical output maximum ramp rate	$T_{\min}^{\prime\prime\prime}$
U_{ini}^{chp}	the CHP initial status	T_{\max}^{fr}
η^{Boi}	conversion efficiency of boiler	T_{\max}^{frz}

TP ^{Boi}	the minimum output of boiler
TPBoi	the maximum output of boiler
n max	
EP	self-discharging rate of ESS
η ²⁵⁵ EE ^{ESS}	ESS efficiency
EE _{ini}	
EP_{UB}^{CH}	upper bound of ESS charge rate
EP_{UB}^{DCH}	upper bound of ESS discharge rate
EE_{IIB}^{ESS}	upper bound of ESS energy
TP ^{TSS,sdc}	self-discharging rate of TSS
TETSS	the initial value of TSS
тоСН	upper bound of TSS charge rate
TPDCH	upper bound of TSS charge rate
TP _{UB}	upper bound of TSS discharge rate
$IE_{UB}^{$	upper bound of 15S energy
A	an appliance which belongs to ECA
h	the hour of the day
d	the day of the week
W	the computational time stop (s or min)
0 _{step}	the standard doviation for social random factor
O _{flat} D	the social random factor
I social P	the seasonal changes
Phase	the hourly probability factor
Peter	the step size scaling factor
TW	the fridge time window
IVV ⁻ _Ω fr	the activity probability effect on the fridge temperature
$\rho \alpha^{fr}$	the model the effect of the on and off states on the
	fridge temperature
vfr	the models the thermal leakage due to the difference
'	between the fridge and room temperature
TW ^{ac}	the AC time window over which the AC can operate
TW^{ht}	the HT time window over which the HT can operate
β^{ac}	the activity probability effect on the indoor temperature
-	(cooling system)
β^{ht}	the activity probability effect on the indoor temperature
	(heating system)
$ ho^{ac}$	the effect of outdoor and indoor temperature differ-
h	ences on indoor temperature (cooling system)
$ ho^m$	the effect of outdoor and indoor temperature differ-
CLD.WTR	ences on indoor temperature (heating system)
Vt	the volume of the cold water which replaces the not
TCLD,WTR	the temperature of cold water which replaces the hot
1	water in water tank at time t
C^{WTR}	the specific heat of water
V ^{WTR}	the volume of water storage
Kt SI	the "price elasticity" of the lighting load
LOUT	outdoor illumination at time t
$L_t^{z,\min}$	the minimum required illumination level of zone z at
-1	time t
T_{dac}^{fr}	desired fridge temperature
T_{r}^{frz}	desired freezer temperature
T_{WTR}^{WTR}	desired water temperature
1 des TIN	desired indeen temperature
I des	
T_{\min}^{r}	minimum fridge temperature
$T_{\rm min}^{\prime\prime2}$	minimum freezer temperature
T_{\min}^{WTR}	minimum water temperature
T_{\min}^{IN}	minimum indoor temperature
$T_{\rm max}^{fr}$	maximum fridge temperature
T_{rz}^{frz}	maximum freezer temperature
4 max	mannan needer temperature

Download English Version:

https://daneshyari.com/en/article/7161610

Download Persian Version:

https://daneshyari.com/article/7161610

Daneshyari.com