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a b s t r a c t

Being able to identify detailed meta factors of energy performance is essential for creating effective res-
idential energy-retrofitting strategies. Compared to other benchmarking methods, nonparametric multi-
factor DEA (data envelopment analysis) is capable of discriminating scale factors from management
factors to reveal more details to better guide retrofitting practices. A two-stage DEA energy benchmark-
ing method is proposed in this paper. This method includes (1) first-stage meta DEA which integrates the
common degree day metrics for neutralizing noise energy effects of exogenous climatic variables; and
(2) second-stage Tobit regression for further detailed efficiency analysis. A case study involving 3-year
longitudinal panel data of 189 residential buildings indicated the proposed method has advantages over
existing methods in terms of its efficiency in data processing and results interpretation. The results of the
case study also demonstrated high consistency with existing linear regression based DEA.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Benchmarking energy performance of existing residential build-
ings is essential in developing successful energy retrofitting strate-
gies. One challenge in benchmarking is to deal with numerous
factors affecting the performance. These factors may include build-
ing orientation, building size, occupants’ behavior, local climate,
and building envelope condition [1–5]. Adopting appropriate
methods and acquiring sufficient data to isolate these factors from
each other is the key for this type of benchmarking research [4]. As
a result, complex quantitative benchmarking frameworks have
been developed to provide guidance for residential energy retrofit-
ting activities [1,3,6].

Data-driven approaches, which derive reference values through
constructed models based on historical data, have been utilized
[1–3,7]. Compared to simulation approaches [7], data driven
approaches have the advantage of being able to evaluate a large
number of residential buildings considering multiple parameters,
such as building characteristics, weather conditions and occupants’
activities. Nonparametric DEA (data envelopment analysis)

estimating the relative-to-best efficiency of buildings relative to
an efficiency frontier which consists of the most efficient buildings,
is emerging as one of the leading quantitative multifactor energy
benchmarking methods [2,8–12]. DEA requires no prior functional
assumptions on inherent relationships between multiple inputs
(e.g. energy) and outputs (e.g. the served floor area), and can dis-
criminate different influential factors (e.g. management, building
size) which is important for an effective retrofitting [13,14].

In DEA, each individual building is generally treated as one
DMU (decision making unit). When a temporal analysis is included,
each individual building in a specific period can be viewed as one
DMU [8,12,15]. Energy efficiency factors of existing buildings can
be categorized into two groups [2]: (1) scale factors, such as build-
ing size, number of occupants; and (2) management factors, such
as occupants’ activities, maintenance policies, envelope insulation,
COP (coefficient of performance) of heating and cooling systems.
Accordingly, three types of efficiency measures can be established
[2,10,11]: (1) scale efficiency, measuring the effects of scale
factors; (2) management efficiency, measuring the consequences
of management factors; and (3) overall efficiency, evaluating the
overall performance due to all the influencing factors. In building
retrofitting, these numerical efficiency values can produce two
practical benefits for decision makers. First, when budget is
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limited, it can provide detailed quantitative information on both
energy performance and saving potential for prioritizing buildings.
In addition, the detailed causes of buildings’ energy inefficiency
enable more focused retrofitting solutions to be developed. For
example, DEA is able to answer whether the inefficiency of a build-
ing is due to inappropriate energy system or poor management [2].
The amount of energy saved through retrofitting can also be
estimated.

In DEA process, the effects of pertinent climatic parameters
must be considered [4]. While earlier work [16] treated climate
variables as internal direct outputs in DEA in order to exclusively
examine the climate control efficiency of public buildings, most
recent literatures [2,6–8,11,12,15] tended to consider climate as
an uncontrollable external operating environment of building
structures. They generally normalized climate’s effects before
DEA to focus on building structure systems themselves. This
approach appears more meaningful within the context of building
energy retrofitting where the building structure pertinent factors,
rather than uncontrollable climatic factors, are to be identified
for retrofitting.

Two main approaches, i.e. MLR (multiple linear regression) [2]
and clustering technique [7] were used previously to address the
noise from climate variables prior to DEA modeling. Lee and Lee
[2] adopted MLR based DEA which adjusted energy consumption
with particular climate condition by obtaining regression

coefficients from the established linear equations. In regression,
the response variable is energy consumption and the explanatory
variables are building related characteristics. The adjusted energy
was then used for the sequential DEA analysis. While very useful,
this approach is heavily contingent upon sufficient data sets [7].
Later, Lee and Kung [7] proposed to use classification based
approach. The investigated buildings were first classified into sep-
arate classes based on their climate conditions using the clustering
technique. The buildings within the same class were assigned with
identical climate parameters and then analyzed separately at class-
level against different frontiers associated with different classes.
This approach is particularly valuable for a segmented DEA bench-
marking (i.e., the buildings are evaluated separately compared to
different efficiency frontiers of different classes). Yet, this approach
may not be easy for a complete unified analysis (i.e., all the build-
ings are benchmarked at once against the same inter-temporal effi-
ciency frontier) which could be desired in many cases [2,8,12].

On the other hand, simple normalization approach [3] was
adopted for addressing the specific impact of individual energy
influencers in building energy benchmarking [1,4,6]. In this
approach, the impacts of building energy factors are evaluated
based on a normalized energy performance indicator (often the
ratio of total energy use over one or two particular factors)
[1,3,17,18]. Two commonly used normalization metrics are:
(1) EUI (energy usage intensity), normalizing the impact of

Nomenclature

Abbreviations
DEA data envelopment analysis
DMU decision making unit
MLR multiple linear regression
EUI energy use intensity
DEU degree day normalized energy usage
CCR Charnes, Cooper and Rhodes
BCC Banker, Charnes and Cooper
CDD cooling degree day
HDD heating degree day
TDD total degree day
BA building age
FA floor area
CO count of occupants
NBA number of bathrooms
AC air conditioning
BT basement type
BC building condition
SD standard deviation
COV coefficient of variance
DRS decreasing returns to scale
IRS increasing returns to scale
VIF variance inflation factor

Symbols in degree day method
TMax; TMin maximum and minimum outdoor temperature
TBase base of indoor temperature setting

Symbols in Tobit regression
yi observed efficiency score for the ith sample
y�i latent uncensored variable for the ith sample in Tobit

regression
xik value of the kth predictor for the ith sample
bk regression parameter of the kth predictor
ni error term

Symbols in data cloud method

RðiÞ;RðiÞ
min ratio and minimum ratio of the volume with i samples

deleted over that without deletion
V ðiÞ;V volumes of data clouds with and without the deletion

of i building samples

Symbols in data envelopment analysis
g its optimal solution being efficiency rating
xik; xij the ith input values of the kth and jth building samples
yok; yoj the oth output values of the kth and jth building

samples
i; o; j the ith input variable, the oth output variable and the

jth building sample
dj weighting coefficient of the jth sample
gCCR solution of CCR model, overall efficiency
gBCC solution of BCC model, management efficiency

Symbols in multiple linear regression
E energy use variable
u constant intercept in regression
xH the Hth energy predictor in regression
wH regression coefficient for the Hth predictor

Symbols in Spearman correlation
q Spearman correlation coefficient
xi; yi converted ranks of raw variables Xi and Yi

n total number of paired efficiency scores

Symbols in computing variance inflation factors
VIFi variance inflation factor for predictor xi
R2
i coefficient of determination for the regression when xi

is dependent variable
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