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a b s t r a c t

Optimal operation of power systems with high integration of renewable power sources has become dif-
ficult as a consequence of the random nature of some sources like wind energy and photovoltaic energy.
Nowadays, this problem is solved using Monte Carlo Simulation (MCS) approach, which allows consider-
ing important statistical characteristics of wind and solar power production such as the correlation
between consecutive observations, the diurnal profile of the forecasted power production, and the fore-
casting error. However, MCS method requires the analysis of a representative amount of trials, which is
an intensive calculation task that increases considerably with the number of scenarios considered. In this
paper, a model to the scheduling of power systems with significant renewable power generation based on
scenario generation/reduction method, which establishes a proportional relationship between the num-
ber of scenarios and the computational time required to analyse them, is proposed. The methodology
takes information from the analysis of each scenario separately to determine the probabilistic behaviour
of each generator at each hour in the scheduling problem. Then, considering a determined significance
level, the units to be committed are selected and the load dispatch is determined. The proposed technique
was illustrated through a case study and the comparison with stochastic programming approach was car-
ried out, concluding that the proposed methodology can provide an acceptable solution in a reduced
computational time.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The constant increment in the price of fossil fuel and the envi-
ronmental impact of human activities has been the most relevant
factors in the development of wind energy and solar energy. How-
ever, the main barrier in the successful integration of this type of
sources is related to their intrinsic variability, which under high
penetration, it is reflected as the increment in the operational costs
of the power system. In fact, according to the analysis of the Belgian
power system [1], if the wind power production is underestimated,
approximately a third of the expected cost savings could be lost. On
the contrary, if the wind power production is overestimated, cost
savings are lost due that it is necessary to use open cycle gas
generators in order to compensate the forecasting error.

In order to reduce the impacts of the wind power forecasting
error, several techniques have been proposed: the integration of

energy storage systems (EES) [2], the analysis of the wind power
aggregation [3], the incorporation of demand response programs
[4], and the analysis of the optimal scheduling under uncertainty
or stochastic unit commitment (UC) problem.

This paper focus on the development of a methodology to solve
the unit commitment (UC) problem considering the uncertainty
related to the wind power generation. In this context, Tuohy
et al. [5] developed a stochastic programming (SP) approach based
on scenario generation of wind power production, failure events,
and load demand. The scenarios used were randomly generated
to take into account the autocorrelation of the analysed time series
(wind power generation, load demand, etc.) by means of an auto-
regressive moving average (ARMA) model. In this framework two
stages are considered: in stage one ‘‘here-and-now’’ decisions are
taken; while in stage two ‘‘wait-and-see’’ decisions are incorpo-
rated. In other words, ‘‘here-and-now’’ decisions are taken assum-
ing perfect forecasting and ‘‘wait-and-see’’ decisions are taken in
the light of the different sources of uncertainty. The incorporation
of wind power generation by means of a representative amount of
realistic scenarios can provide a reasoning manner to determine
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spinning reserve on an hourly basis [6]. However, this approach
requires an important computational effort; according to the expe-
riences of Ruiz et al. [7], the computational time could be until two
or three orders of magnitude higher than those required for solving
a deterministic UC problem. For this reason, improvements in the
mathematical formulation of SP and decomposition techniques
have been widely suggested in the literature.

Another approach proposed in the literature is based on chance-
constrained programming (CCP). Ding et al. [8] have incorporated
several uncertain variables, such as load demand, force outages,
wind power, and energy prices in the UC problem using CCP. In this

approach the stochastic constraints are substituted by their equiv-
alent deterministic, in order to obtain a mathematical formulation
that can be solved by using standard branch and bound algorithm.
In a similar manner, Ji et al. [9] introduced a methodology based on
CCP, where a combination of quantum-inspired binary gravita-
tional search algorithm is used to determine the unit scheduling
for several confidence levels and different forecasting errors.

Wang et al. [10] have developed a model that combines CCP and
SP. Authors proposed a combined sample average approximation
(SAA) algorithm that consists of three main processes: scenario
generation, convergence analysis, and solution validation. The

Nomenclature

m index for scenarios ðm ¼ 1;2; . . . ;MÞ
n index for generators ðn ¼ 1;2; . . . ;NÞ
d index for the interval in the discretization of PDF of load

forecasting ðd ¼ 1;2; . . . ;DÞ
j index for the interval in the discretization of PDF of

wind forecasting ðj ¼ 1;2; . . . ; JÞ
t index for time instant ðt ¼ 1;2; . . . ;HÞ.
z index for the interval in the discretization of start-up

cost ðz ¼ 1;2; . . . ; ZÞ
a significance level used to determine the confidence

interval
G significance level used to determine the definitive unit

scheduling ðUt
nÞ

ARNt
m autoregressive time series for scenario m

Ø one-lag autocorrelation parameter
� white noise of ARMA model
NTWPGt normalized total (forecasted) wind power generation at

time t
TWPGt total (forecasted) wind power generation at time t

(MW)
NTWPGt

m normalized total (synthetically generated) wind pro-
duction at time t for scenario m

TWPGt
m total (synthetically generated) wind power production

at time t for scenario m (MW)
b limit to the outliers of the scenario generation process
IFEm vector that reflects the degree at which the hourly val-

ues of a determined scenario are within the correspond-
ing forecasting error

FEt
m vector to represent if scenario m at time t is within the

defined confidence interval according to the forecasting
error.

NPrfmg normalized probability of scenario m of wind power
generation

Prf�g probability of occurrence of a determined event
Ef�g expected value of a determined variable
LBt

d;m binary variable to represent the selection of the dth load
interval of scenario m at time t

LPt
d probability of the dth load interval at time t

WBt
j;m binary variable to represent the selection of the jth wind

power interval of scenario m at time t
WPt

j probability of the jth wind power interval at time t
Rm total generation cost of scenario m ($)
R total generation cost of the UC problem (h)
FCt

n;m fuel consumption cost of unit n at time t for scenario m
($/h)

SUCt
n;m start-up cost of unit n at time t for scenario m ($/h)

SDCt
n;m shutdown cost of unit n at time t for scenario m ($/h)

Pt
n;m power generation of unit n at time t for scenario m

(MW)
Pt

n power generation of unit n at time t (MW)

Pmax
n maximum power generation of unit n (MW)

Pmin
n minimum power generation of unit n (MW)

MPt
n;m maximum available power of unit n at time t for

scenario m (MW)
Wt

m aggregated wind generation for scenario m at time t
(MW)

Lt
m load demand at time t for scenario m (MW)

SR required spinning reserve
an; bn parameters of the fuel consumption cost of unit n ($/h,

$/MWh)
v t

n;m binary variable to represent the commitment (v t
n;m ¼ 1)

or de-commitment (v t
n;m ¼ 0) of unit n at time t for sce-

nario m
Ut

n definitive UC solution obtained from the proposed
methodology, common to all scenarios considered

K z
n value of the interval z in the discretization of startup

cost ($/h)
Cn shutdown cost of unit n ($/h)
URn ramp-up rate of unit n (MW/h)
DRn ramp-down rate of unit n (MW/h)
SURn starting ramp rate of unit n (MW/h)
SDRn shutdown ramp rate of unit n (MW/h)
UPn amount of hours that generator n have to be initially

committed in order to fulfil minimum up time con-
straint (h)

DWn amount of hours that generator n have to be initially
de-committed in order to fulfil minimum down time
constraint (h)

MUTn minimum up time of unit n (h)
MDTn minimum down time of unit n (h)
OFFt

n integer matrix that saves the cumulative account of the
number of hours that generator n has been de-commit-
ted (h)

ONt
n integer matrix that saves the cumulative account of the

number of hours that generator n has been committed
(h)

lt
WFE mean value of the discretized wind generation PDF at

time t (MW)
lt

LFE mean value of the discretized load demand PDF at time t
(MW)

lTWPG mean value of the time series TWPGt (MW)
rt

WFE standard deviation of the discretized wind generation
PDF at time t (MW)

rt
LFE standard deviation of the discretized load demand PDF

at time t (MW)
rTWPG standard deviation of the time series TWPGt (MW)
VOLL value of lost load ($/MWh)
VRNS value of reserve not supplied ($/MWh)
ENSt

m energy not supplied of scenario m at time t (MWh)
RNSt

m reserve not supplied of scenario m at time t (MWh)
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