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Analyzing the behaviors of wind direction can complement knowledge concerning wind speed and help
researchers draw conclusions regarding wind energy potential. Knowledge of the wind’s direction
enables the wind turbine to be positioned in such a way as to maximize the total amount of captured
energy and optimize the wind farm’s performance. In this paper, first-order and higher-order Markov
chain models are proposed to describe the probabilistic behaviors of wind-direction data. A case study
is conducted using data from Mersing, Malaysia. The wind-direction data are classified according to an
eight-state Markov chain based on natural geographical directions. The model’s parameters are estimated
using the maximum likelihood method and the linear programming formulation. Several theoretical
arguments regarding the model are also discussed. Finally, limiting probabilities are used to determine
a long-run proportion of the wind directions generated. The results explain the dominant direction for
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1. Introduction

Wind energy is counted among the most promising green
energy options due to its characteristics of being abundant every-
where, renewable, widely distributed and minimally polluting [1].
In fact, critical issues, such as the global decline in fossil fuel
reserves, the damaging effects of global warming, and rising
demand due to increasing population, have necessitated the devel-
opment of alternative energy resources, such as wind power [2].
Moreover, wind energy does not suffer from transportation prob-
lems, and its utilization does not require advanced technology
[3]. Thus, wind energy has been growing rapidly worldwide and
has become a top contributor to the renewable energy mix due
to its high capacity and its generation costs, which are becoming
competitive with those of conventional energy sources [4]. As
reported by the Global Wind Energy Council (GWEC) [5], the total
global cumulative installed wind power capacity has increased
tremendously from 1996 to 2013. Fig. 1 shows the increasing tra-
jectory of global cumulative wind capacity over the period from
1996 to 2014.

To investigate the potential of wind energy, wind speed and
wind direction are important variables that contribute significant
information. The variable of wind speed has been copiously
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studied by many researchers around the world, particularly in
terms of mathematical and statistical analyses; for example, see
[6-22]. Among such studies, the Markov chain is one of the most
popular and powerful models to have been investigated by many
researchers, particularly to analyze the stochastic behaviors of
the fluctuating nature of the wind source. In fact, the Markov chain
model has been determined to be a good model for synthetically
generating wind-speed data. For example, Sahin and Zen [11] used
a first-order Markov chain to model and simulate/generate syn-
thetic wind-speed time-series data. Those researchers determined
various states of the Markov chain based on the arithmetic average
and standard deviation. They found that, for short periods of time,
the Markov chain model is able to exhibit strong congruency
between measured values and synthetic values. They also found
that more than 90% of the statistical parameters in the synthetic
wind speed could be account for by the Markov chain model. Nfa-
oui et al. [12] analyzed hourly wind-speed time-series data using a
Markov chain model. Their analysis was performed by defining 12
categories of wind speed. They found that the 12 x 12 transition
probability matrix is quite useful for generating synthetic wind-
speed time-series data. In fact, they also described the limiting
behavior of wind-speed data based on the Markov chain model.
Shamshad et al. [13] compared the first and second orders of the
Markov chain model’s performance in generating synthetic wind-
speed time-series data. Twelve wind-speed states at 1-m/s inter-
vals were defined in order to capture the shape of the probability
density function. Shamshad et al. found that the second order of
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the Markov chain would slightly improve the results of syntheti-
cally generated data. In addition, based on the observed wind-
speed data and statistical properties such as the mean, standard
deviation, percentiles, and autocorrelations, they concluded that
the synthetic data from Markov chain model are able to satisfacto-
rily preserve the statistical characteristic of wind-speed data. Kantz
et al. [14] used a continuous-state Markov chain model to approx-
imate the dynamics of turbulent wind-speed data. The m-th con-
tinuous state was defined by vectors of real numbers, and the
transition probabilities were obtained separately from online data
for every given actual state. Katz et al.’s results showed that the
predicted probabilities derived from the Markov chain model are
able to meaningfully forecast turbulent gusts.

Beyond the aforementioned observations, there have also been
several interesting studies of wind modeling that have involved
modification of the original Markov chain model. For example,
Hocaoglu et al. [15] proposed a hidden Markov model (HMM) in
which atmospheric pressure was defined as a dependent process
when modeling the wind-speed data. In their model, they assigned
the wind-speed variable as a hidden process behind the pressure
observations. Thus, synthetic generation data for wind speed were
produced using the information on the atmospheric pressure. Their
results showed that the HMM can achieve high accuracy in gener-
ating wind speed estimates. Ailliot and Monbet [16] proposed the
application of a non-homogeneous Markov-Switching Autoregres-
sive (MS-AR) model to describe wind-speed time-series data. The
time evolution of wind speed was explained by several autoregres-
sive models, with switching between autoregressive models being
controlled by the hidden Markov chain. They found that the MS-AR
was able to provide good descriptions of important properties of
the wind data, such as the marginal distribution, length of storms,
and calm periods. However, the MS-AR model had some limita-
tions, such as its potential to simulate negative wind-speed data
and its failure to reproduce observed inter-annual variability that
was available in the data. D’Amico et al. [17] proposed first- and
second-order semi-Markov chains to model wind-speed data. They
found that the wind-speed fluctuation could be described in a
semi-Markovian nature. The synthetic data generated by the
semi-Markov model were found to have statistical properties sim-
ilar to those of real data.

There are still many more research studies that have used the
Markov chain approach to evaluate and model the stochastic
behaviors of wind-speed data. Unfortunately, studies of the wind-
direction variable have not been common. As mentioned by Mass-
eran et al. 18], the wind-direction variable has been recognized as
an important one in the evaluation of wind energy because infor-
mation about wind direction can complement information about
wind speed to aid in drawing conclusions about energy potential.
However, some researchers have dealt with Markov chain models
with respect to wind direction. For example, Ettoumi et al. [19]
used a first-order Markov chain model with nine states of wind
direction representing the 9 directions of the compass card.
Three-hour wind data were used in their study. They found that

the first-order Markov chain model could be fitted well to the
wind-direction data. In addition, they provided a combination of
a first-order, nine-state Markov chain model for the wind direction
with a first-order, three-state Markov chain model for the wind
speed, and their final results were found to yield a good represen-
tation of the observed wind data. Hagen et al. [20] proposed a mul-
tivariate Markov chain model (MMM) to describe the wind energy
at offshore wind parks. The MMM model was used to generate a sea
state, which represented by the wind speed, wind direction, wave
height, wave period and wave direction. The transition probability
for the MMM model was estimated separately for each month and
also for monthly transformations of the data. In addition, they eval-
uated the quality of the MMM model by comparing its statistical
properties to the statistical properties of the observed data. Their
final results indicated that the MMM model is able to provide a rea-
sonable approximation of the observed data. Scholz et al. [4] pro-
posed the application of a cyclic time-dependent model (CTDM)
with a three-dimensional state space: namely, the wind-power,
wind-speed and wind-direction variables. The transition probabil-
ity for this model was expressed by a Bernstein polynomial. They
also provided an objective function to ensure that the CTDM model
would provide an accurate representation of the long-term behav-
ior of the wind data. Based on the CTDM model, they simulated syn-
thetic data, which were compared with the original data. Their
results showed that the CTDM model was able to reproduce the
diurnal pattern in the data. Moreover, the persistence of power pro-
duction could also be estimated for the CTDM model.

This study has taken the initiative to promote the importance of
wind-direction analysis, particularly with the application of Mar-
kov chain modeling, to provide information regarding behaviors
of the wind regime, toward aiding the process of energy
assessment.

2. Study area and data

Mersing is situated in the state of Johor, Malaysia. Its geograph-
ical coordinates are 2°26’North and 103°50’East, as shown in Fig. 2.
Throughout the year, the Mersing region, as well as the whole of
Peninsular Malaysia, generally experiences wet and humid condi-
tions, with daily temperatures ranging from 25.5 °C to 35 °C. The
wind that blows across Peninsular Malaysia is influenced by the
southwest monsoon, the northeast monsoon and two short inter-
monsoon periods. Generally, the southwest monsoon occurs from
May to September, whereas the northeast monsoon occurs from
November to March. In addition, because Peninsular Malaysia is
surrounded by the sea, it is also influenced by the effect of sea
breezes and land breezes, especially when the sky is not cloudy.
During most afternoons, sea breezes occur at speeds of 10-15 kn.
However, at night, the reverse process occurs. Weak land breezes
occur in coastal areas [23].

The 020C Wind Direction Sensor, provided by Met One Instru-
ments, has been used by Malaysia’s Department of Environment
to collect hourly wind-direction data. The 020C Wind Direction
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Fig. 1. Global cumulative installed wind capacity over the period 1996-2013 [5].
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