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a b s t r a c t

In this paper, an online self-tuning generalized minimum variance (GMV) controller is proposed for a
100 KW waste heat recovery system with organic Rankine cycle (ORC). The ORC process model is formu-
lated by the controlled autoregressive moving average (CARMA) model whose parameters are identified
using the recursive least squares (RLS) algorithm with forgetting factor. The generalized minimum
variance algorithm is applied to regulate ORC based waste heat recovery system. The contributions of this
work are twofold: (1) the proposed control strategy is formulated under the data-driven framework,
which does not need the precise mathematic model; (2) this proposed method is applied to handle
tracking set-point variations and process disturbances by improved minimum objective GMV function.
The performance of GMV controller is compared with the PID controller. The simulation results show that
the proposed strategy can achieve satisfactory set-point tracking and disturbance rejection performance.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The rapid increasing consumption of energy has resulted in
energy shortage and greenhouse effect in all over the world. Effi-
cient energy conservation and environment protection can be
achieved by utilizing various low-grade heat in terms of solar
power generation [1,2], engine exhaust gases [3], geothermal heat
[4], and biological waste heat. Several methods were proposed to
recover low grade thermal energy and convert it into higher qual-
ity mechanical energy [5]. The viability of implementing recovery
energy from industrial processes has been shown by analyzing
energy and exergy efficiency [6]. In addition, low grade heat energy
was used to drive a silica gel–water adsorption chiller [7], a double
stage LiBr–H2O thermal compressor [8] and a seawater and brack-
ish water reverse osmosis desalination systems [9] respectively.

Organic Rankine cycle (ORC) is a well-known potential candi-
date in the field of low-grade heat recovery system [10–12]. In
such a system, organic working fluids which have larger heat
absorption capacities than water can improve heat-exchange effi-
ciency [13]. The ORC systems are characterized by environmentally
friendly and high efficiency besides simplicity and availability.

Up till now, some researchers have studied selection of working
fluids [13–15] and performances analysis of ORC systems [16–26].
The selection of working fluids was investigated with the help of
thermodynamic models, thermal efficiency definition and enthalpy
difference analysis [13]. The selection of optimal working fluids was
studied based on computer aided molecular design and process
optimization techniques [14]. The performances of ORC systems
with R113 and R123 working fluids were compared in [15] and it
was pointed out that the efficiency of an ORC system depends on
working conditions and the thermodynamic properties of the work-
ing fluid. The thermodynamic of ORC systems was studied in [16]. It
was pointed out that ORC based waste heat recovery process can
improve the system performance [17]. The performance analysis
and thermo-economic optimization of an ORC system were investi-
gated in [18–21]. Waste heat recovery was investigated using an
organic Rankine cycle with two different configurations [22]. The
performances of ORCs with different working fluids were analyzed
in [23]. The evaluation of isopentane was studied for an ORC system
using R-245fa and their mixtures [24]. Based on heat transfer per-
formance analysis, a novel evaporator was designed in [25]. The
theoretical analysis of the expander leaving loss varying with the
major temperatures in ORC systems was reported in [26].

Modeling for ORC systems has been paid attention by some
scholars [27–32]. The mathematical model was built for a scroll
expander [27,28]. The physical models of key components in ORC
systems were investigated and formulated, the whole ORC system
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models were then built by interconnecting different sub-models in
[29–32]. Nevertheless, these models usually need highly compli-
cated computation. Moreover, the existed physical models usually
lead to modeling error due to simplification and assumptions in
modeling process.

Very few investigations on control of ORC systems have been
carried out and reported so far. Three PI control strategies were
proposed for ORC systems in [33], the difference among these con-
trol laws lies in the employed set-points of the closed-loop control
systems: (a) the constant set points of the evaporating temperature
and evaporating temperature are determined directly; (b) the var-
iant evaporating temperature is set according to the condensing
temperature, the heat source temperature and the heat source flow
rate; (c) the optimized working fluid flow rate is determined by the
heat source temperature, the condensing temperature and the
expander rotational speed. However, the PI control strategies can
not necessarily obtain better performance, because the ORC sys-
tems are characterized by nonlinearity, uncertainty, multivariable
coupling and load disturbances [34,35].

There are stochastic disturbances in ORC systems. For example,
the mass flow rate and temperature of waste heat usually fluctu-
ate. In addition, measurement noises are also existed in ORC sys-
tems. Hence, it is necessary to investigate control law for ORC
systems within stochastic control framework.

This work aims at proposing a controller for a 100 KW ORC
based waste heat recovery process. The recursive least squares
(RLS) algorithm with forgetting factor is applied to identify the
ORC process modelled by a controlled autoregressive moving aver-
age (CARMA) model using input/output data of ORC systems. The
online self-tuning generalized minimum variance controller is then
applied to control multivariable ORC process.

The remainder of the paper is organized as follows: a 100 kW
waste heat recovery system with ORC is introduced in Section 2.
In Section 3, the physical model of the ORC system is provided,
and then the control-oriented model of the waste heat recovery
system is identified by using recursive least-square (RLS) algorithm
with forgetting factor. A generalized minimum variance controller
(GMVC) is then designed to control the waste heat recovery sys-
tem. Simulation studies are presented to verify the efficiency of
the proposed control algorithm in Section 4. Finally, some conclu-
sions are drawn in Section 5.

2. Description of an ORC system

This section aims at introducing an ORC based waste heat
recovery system and its control objective. Fig. 1(a) shows the sche-
matic diagram of an ORC based waste heat recovery power plant

Nomenclature

A areas (m2)
q density (kg/m3)
m mass (kg)
_m mass flow rate (kg/s)

D diameter (m)
P pressure (kPa)
a heat transfer coefficient W/(m2 K)
T temperature (�C)
Cp heat capacity (J/kg �C)
L length (m)
h specific enthalpy (J/kg)
v velocity (m/s)
lT throttle valve position
N output power (kW)
w pump speed (r/min)
�v specific volume (m3/kg)
V volume (m3)
M total mass in volume (kg)
W work per unit time (W)
E total energy in volume (J)
_Q heat flow (W)
g efficiency
Ts sampling time
y(k) output variables
u(k) input variables
A(q�1) the polynomial matrix of output y(k)
B(q�1) the polynomial matrix of input u(k)
C(q�1) The polynomial matrix of a random white noise vector

n(k)
n(k) a random white noise vector
n order of polynomial matrix
d time delay
ŷðk=hÞ estimated outputs
Ai matrix of state variables
Bi matrix of input variables
Ci matrix of disturbances
/T(k) past data vector
h original value of system parameters vector
h
_

estimated system parameters vector

k instant
J performance index
b forgetting factor
K(k) estimator gain
P(k) estimation of error variance
n(k) unmeasured disturbance
H(q�1) weight polynomial of output
R(q�1) weight polynomial of set-point
kðq�1Þ weight polynomial of input
E(q�1) the solutions of Diophantine equation
F(q�1) the solutions of Diophantine equation
G(q�1) the solutions of Diophantine equation
na order of A(q�1)
nb order of B(q�1)
nc order of C(q�1)
ne order of E(q�1)
nf order of F(q�1)
ng order of G(q�1)
nh order of H(q�1)
nr order of R(q�1)
nk order of kðq�1Þ

Subscripts
w wall
f working fluid
i inlet or inner
o outlet or outer
ex exhaust gas
a air
exp expander
con condenser
eV evaporator
rec receiver
p pump
r set-point
1 sub-cooled
2 two-phase
3 superheated
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