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a b s t r a c t

Gas turbine combined cycles are expected to play an increasingly important role in the balancing of
supply and demand in future energy markets. Thermodynamic modeling of these energy systems is fre-
quently applied to assist in decision making processes related to the management of plant operation and
maintenance. In most cases, model inputs, parameters and outputs are treated as deterministic quantities
and plant operators make decisions with limited or no regard of uncertainties. As the steady integration
of wind and solar energy into the energy market induces extra uncertainties, part load operation and reli-
ability are becoming increasingly important. In the current study, methods are proposed to not only
quantify various types of uncertainties in measurements and plant model parameters using measured
data, but to also assess their effect on various aspects of performance prediction. The authors aim to
account for model parameter and measurement uncertainty, and for systematic discrepancy of models
with respect to reality. For this purpose, the Bayesian calibration framework of Kennedy and O’Hagan
is used, which is especially suitable for high-dimensional industrial problems. The article derives a cali-
brated model of the plant efficiency as a function of ambient conditions and operational parameters,
which is also accurate in part load. The article shows that complete statistical modeling of power plants
not only enhances process models, but can also increases confidence in operational decisions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Electricity production, and energy in general, play a pivotal role
in every modern society, as energy is required for fulfilling almost
all basic needs, such as food, water, transportation, shelter, and
security. To ensure the availability of energy for future generations,
a collective effort is undertaken to decrease the dependency on
conventional energy resources, such as oil, natural gas, and coals,
of which the future supply is limited. There is a need for alternative
and sustainable energy resources. The more mature sustainable
technologies are wind and solar energy.

Given the currently available technologies, electricity cannot
yet be stored in large quantities. It is a product that should be
delivered momentarily, and on demand. A national grid authority
is responsible for maintaining the power balance on the electricity
grid. The power producing companies usually have a fleet of power
plants with varying characteristics, and power is dispatched from
the plant with the lowest estimated incremental costs. El-Naggar

et al. [1] shows that the fuel cost function (i.e., efficiency as a func-
tion of ambient conditions and operational parameters) plays an
important role in the economic deployment of power plants.

While these mechanisms are intended to maintain the balance on
the electricity grid, power plants based on sustainable technologies
are increasingly added to the grid to comply to the Kyoto protocol,
which requires the reduction of CO2 emissions. However, the most
mature sustainable technologies, wind and solar, are not available
on demand, so that their production rates cannot be controlled.
Despite efforts in predicting the behavior of wind (e.g., [2]), and solar
energy (e.g., [3]), a certain amount of uncertainty remains present,
where the uncertainty increases with the forecast lead time.

Gas turbine combined cycles (GTCC), are expected to play an
important role in keeping the grid in balance, because of their rel-
atively short start-up and shut down times. They are expected to
be operated increasingly as reserve capacity [4] and thus at lower
load factors (ratio of averaged power output to maximum power).
Accordingly, reliability, predictability and flexibility play an impor-
tant role in the operation of these plants, and part load operation is
becoming increasingly important. It is highly recommended to
keep accurate track of the performance of these units.
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The increasing uncertainty on the supply side of the electricity
market, combined with the usual fluctuations on the demand side,
result in an increasing need for uncertainty analysis in the field of
power plant management. Uncertainties can exist in the various
aspects of plant design, operation, and management. Metaxiotis
et al. [5] provides an overview of the application of advanced com-
putational techniques for electric load forecasting. Li and Huang
[6], Dong et al. [7] demonstrate how electric power system plan-
ning can be done, taking into account uncertainties in energy
demand and supply, conversion technology, and costs/benefits,
among others.

An important issue is the quantification of uncertainties within
process models. The method of Bayesian inference [8] represents a
way to estimate unknown model parameters and quantify the
uncertainties in these parameters. Measurements are used to cali-
brate the model. This method has been applied to various cases in
plant and engine diagnostics, such as [9,10].

A specific case of Bayesian inference is the Kennedy and
O’Hagan framework for model calibration [11]. This method not
only calculates most likely model parameters and their probability,
but also estimates the systematic bias of models with respect to
reality. This framework has been applied to implosion modeling
[12], structural modeling [13], and gas turbine performance mod-
eling [14], among others.

However, the Kennedy and O’Hagan Bayesian framework has
not yet been applied to the modeling of GTCC plants. With this
method, it is possible to statistically predict important output
quantities, such as plant power output and efficiency, taking into
account the uncertainties in estimated model parameters. The
present article applies this method for quantifying the various
sources of uncertainty in GTCC modeling.

After the introduction, a brief overview is given of Bayesian cal-
ibration and the Kennedy and O’Hagan framework. A gas turbine
performance model of the GT26, described in Appendix A, is then
calibrated using the framework. Unknown parameters of the gas
turbine model represent the influence of variable inlet guide vanes,
turbo machinery map inadequacy, and some aspects of the cooling
flow distribution. The parameters are estimated from measure-
ments recorded during normal operation of the Alstom KA-26-1
plant situated in Lelystad, The Netherlands. The calibration frame-
work is then applied to a steam cycle model of the same plant,
described in Appendix B. Unknown parameters of the steam cycle
model include low pressure steam turbine design point efficiency.
Among the calibration results are calibrated predictors of the gas
turbine and steam cycle respectively.

The gas turbine and steam cycle models were created in two
different modeling environments: GSP [15] and Thermoflex [16]
respectively. Two methods are proposed to integrate these models
for predicting overall plant efficiency. The first of these methods
uses the outputs of a calibrated gas turbine model as inputs to a
separately calibrated steam cycle model, to predict plant behavior:
the integration is done after calibration. The second method inte-
grates the models before calibration, so that, during the calibration,
a single plant model is created.

The resulting integrated plant model can be applied to predict
the plant efficiency as a function of ambient conditions and load
setting, the so called fuel cost function. The models are shown to
accurately predict part load performance of the plant. This type
of models can be regularly updated with recent measurements,
so that the resulting predictions become more reliable, and the
information about plant performance is always up-to-date.

2. Bayesian analysis and model calibration including model bias
estimation

2.1. Introduction to Bayesian analysis

In Bayesian statistics [8], probability density functions can
describe the present knowledge about physical as well as non-
physical quantities. Unknown model parameters (h) are considered
as random variables, whose probability distribution can be
calculated from the probability distribution of measured output
variables (yi), using Bayes’rule:

qðhijyiÞ ¼
qðyijhiÞqðhiÞ

qðyiÞ
; ð1Þ

where qðhijyiÞ is called the posterior, qðyijhiÞ represents the likeli-
hood function, and qðhiÞ is the prior. qðyiÞ is independent of the
parameters h and serves as a normalization constant. The aim of
Bayesian statistics is to represent the complete state of knowledge
rather than a (subjective) part of it.

2.2. Outline of the Kennedy and O’Hagan framework

Within the context of Bayesian analysis, Kennedy and O’Hagan
[11] proposed a model calibration method that estimates unknown
or partially known physical parameters especially in high dimen-
sional models. If ĥi are the hypothetical ‘true’ values for the model

Nomenclature

d Model discrepancy
� Noise
ĥ Hypothetical true value of model parameters
q Probability density
h Unknown model parameter
COMP Compressor
DOE Design Of Experiments
EV Environmental vortex (burner)
GPMSA Gaussian process models for simulation analysis
GSP Gas turbine simulation program
GT Gas turbine
GTCC Gas turbine combined cycle
HP High pressure
HPT High pressure gas turbine
LHS Latin Hypercube Sampling
LHV Lower heating value

LP Low pressure
LPST Low pressure steam turbine
LPT Low pressure gas turbine
MCMC Markov Chain Monte Carlo
OTC Once through cooler
RBC Rankine Bottoming Cycle
SEV Sequential environmental vortex (burner)
TAT1 Low pressure gas turbine exit temperature
TAT2 High pressure gas turbine exit temperature
TIT1 Turbine inlet temperature of first combustor
TIT2 Turbine inlet temperature of second combustor
VIGV Variable inlet guide vane
y Model output
x Model output
y* Measured output
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