
FLSEVIER

Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

Profit enhancement by a set of performance and robustness indices based design of dual-dimensional PODC and PSS2B in smart grids

H. Shayeghi*, Y. Hashemi

Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil, Iran

ARTICLE INFO

Article history: Received 10 February 2014 Accepted 21 March 2014 Available online 16 April 2014

Keywords: Smart grid Electricity market WSADC PODC Ancillary service Profit enhancement

ABSTRACT

Expansion of power systems is accompanied by innovations in smart grid solutions to power system operation and control. Profit enhancement by power oscillation damping controllers (PODC) and acceleration based power system stabilizer (PSS), model PSS2B, designed by the idea of pseudo-spectra based on multi-objective optimization is presented. The contribution of multi-objective functions in respect of performance and robustness criteria in stability enhancement is evaluated by considering the control actions of PODC and PSS2B as an ancillary service (AS). The robustness requirement is achieved by using the idea of pseudo-spectra to handle the changes of power system parameters and time delay introduced by processing of remote signals in the wide-area supplementary damping controller (WASDC). The weighted sum of six objective functions as performance and robustness criteria is selected as low-frequency oscillation damping index (LFODI). Two scenarios for the evaluation of small signal stability as an AS provided by PODC and PSS2B are considered. A multi-objective optimization approach based on LFODI, generation costs is formulated and improved non-dominated sorting genetic algorithm-II (INSGA-II) is employed to solve this problem. Fuzzy decision making (FDM) is used to find the best compromise solution from the set of Pareto-solution obtained by INSGA-II. Comparative analysis of the results of the conventional method and the proposed design method is presented by case study on a modified 2-area 4-machine power system.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Application of phasor measurement units (PMUs) with modern communication tools in expansion of smart grids creates new opportunities. The presence of such technologies enables advanced smart grid applications, such as the real-time tracking of system dynamics [1], that were not feasible before. Secure operation of smart grids to maintain high level of system stability is an important issue. Hence, the need for a systematic study and design of a comprehensive system control strategy is gaining greater attention. From the deregulated electricity market perspective, independent system operators (ISOs) are in charge of guaranteeing stable, secure and reliable operation of the power grid [2]. It includes tuning of the controllers to enhance system security [3]. Thus, there is a need for tuning methods that guarantee system stability within the context of a market operating environment.

In a system with several generators, parameters of the PSSs would be optimally tuned in a coordinated manner by the ISO, or

E-mail address: hshayeghi@gmail.com (H. Shayeghi).

a similar entity. These PSSs perform a service for system by providing stabilization action in response to disturbances that occur in the system. In the absence of this service, the system will in some cases become unstable due to sustained low-frequency oscillations [4]. Evidentially, this directly affects the transmission system security and reliability, and hence the service provided by such PSS control action can be classified within the AS definition as a service for bulk transmission system security.

The wide-area control technologies offer a great potential to overcome the shortcomings of conventional local controllers such as PSSs [5]. One promising application of wide-area control system (WACS) using global measurements obtained by wide-area measurement systems (WAMS) is WSADC [6]. WASDC implementation, such as control of PSS using synchronized phasor measurements have been discussed in [7]. One of the concerns is the adverse effect of data communication problems, like latency and low data of feedback rate, on the closed-loop performance and hence secure operation of power system [8]. This has inhibited practical deployment of WSADC except for a few prototype or pilot schemes.

Feedback data rate is often limited by the available bandwidth of communication channels and could be critical for satisfactory closed-loop performance [9]. Especially, for networked control

^{*} Corresponding author. Address: Daneshgah Street, P.O. Box 179, Ardabil, Iran. Tel.: +98 451 5517374; fax: +98 451 5512904.

Nomenclature UPFC-PODC unified power flow controller-power oscillation k_s, T_s FACTS gain and time constant damping controller real power of ith generator P_{Gen} **PSS** power system stabilizer offer price of ith generator C_{Gen} WASDC wide-area supplementary damping controller weight factors for J_i ρ_i AS ancillary service objective function J LFODI low-frequency oscillation damping index polynomial mutation index η_m **INSGA** improved non-dominated sorting genetic algorithm η_c crossover index feasibility space ISO independent system operators number of objectives **PODC** power oscillation damping controller n_0 FDM fuzzy decision making ζ, σ real part and damping ratio of the eigenvalue IMI linear matrix inequalities minimum singular value σ_{min} BMI bilinear matrix inequalities maximum singular value σ_{max} MADM multi-attribute decision making excitation and boosting transformer reactance χ_E, χ_B simulated binary crossover C_{dc} , V_{DC} SBX DC link capacitance and voltage DCD dynamic crowding distance PSS control signal u_{pss} PSS2B accelerating power PSS model right and left eigenvector t, vSSC-OPF small perturbation stability constrained OPF residue magnitude R T_1, T_2 Lead and lag time constant of controller **GPS** global positioning system **PMU** phasor measurement unit T_3, T_4 lead and lag time constant of controller WAMS wide-area measurement systems time delay WACS washout time constant wide-area control system T_{ω} **FACTS** flexible alternating current transmission system Κ proportional gain of the controller **TCSC** thyristor controlled series capacitor OS_i overshoot of ith signal VSC voltage source converter US_i undershoot of ith signal LFS low-frequency swing $T_{s,i}$ settling time of ith signal **SVD** singular value decomposition weightage set $\rho_{set,i}$ **NERC** North American electric reliability council J_k value at weightage set iJ_k J_verall AVR automatic voltage regulation overall J_k values LAE performance index least average error η_{LAE} excitation and boosting amplitude modulation ratio tie-line active power m_E , m_B A_c , B_c , C_c , D_c state matrixes for linear damping controller δ_E , δ_B excitation and boosting phase angle F output feedback matrix A_s , B_s , C_s , D_s state matrixes for a linearized power system excludgenerator speed ing the controllers ω A_r , B_r C_r , D_r state matrixes for a closed-loop power system eigenvalue of A_r

systems relying on communication of feedback signals from distant sensors, bandwidth limitation is a matter of serious concern. In recent years, research has been focused on desirable properties of communication networks to guarantee a minimum performance level with conventional control approach [10]. Also, a lot of attention has been devoted to assessing the stability of standard communication networks [11]. From the viewpoint of stability analysis and controller design, it is necessary to consider latency in the design procedure in order to maintain a WASDC-equipped power system stable. In the design of said controllers, robust control methods can be used as effective and premier solutions to handle the time delay as part of system uncertainties.

Various methods of robust control design have been suggested in the literature. Many damping controller design methods ensure dynamic performance of the closed-loop system by driving all poles to a so-called linear matrix inequalities (LMI) or bilinear matrix inequalities (BMI) region specially defined in the complex plane [12]. Drawback of the matrix inequality approach is that it usually yields controllers with a complex structure and of high order. The simplicity of the controller structure is always preferred because it is easy to adapt in the existing controllers through either hardware or software modifications. Therefore, there is scope for low-order robust control design. The difficulty in dealing with the robustness by matrix inequalities has recently led to a new trend in control theory to solve the problem of robust design by non-convex, non-smooth numerical optimization using suited robustness criteria [13]. High order and large system dimension, that limit

the applicability of design methods based on matrix inequalities, can be effectively dealt with non-smooth optimization.

With deregulation and the separation of generation and transmission, the ISO often has no direct control over individual power stations and has to purchase ASs from AS providers [14]. In such an environment, issues pertaining to payment mechanisms for such services are extremely important for the proper functioning of the system [15]. Price estimation of system security provided by PSS and WASDC has become one of the concerns in power system [16]. A survey from the economic perspective of service provided by dual-dimensional supplementary damping controller and PSS2B is given in [17]. Allocation of payoffs to generators for their PSS-control services and a possible payment scheme is considered in [18] based on cooperative game theory using the concept of shapely values [19]. Two scenarios for small signal stability service valuation have been presented in [20] with the economic value of this service determined by a multi-objective optimization process.

The role and performance of the dual-dimensional PODC and PSS2B, designed based on the idea of pseudo-spectra to deal with the fixed structure of controllers in the context of deregulated power markets, is examined in this paper. Pseudo-spectra opinion is an effective method for analyzing the robust controller in the theory of matrices. Focusing on inter-area modes, a dual-dimensional PODC is utilized. The latency caused by transmission of remote signals is considered as part of system uncertainties handled with robust controllers. It is proposed that the PODC and PSS2B efforts

Download English Version:

https://daneshyari.com/en/article/7164829

Download Persian Version:

https://daneshyari.com/article/7164829

<u>Daneshyari.com</u>