
Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

Dynamic performance assessment of a micro-trigeneration system with a desiccant-based air handling unit in Southern Italy climatic conditions

Giovanni Angrisani*, Carlo Roselli, Maurizio Sasso, Francesco Tariello

DING, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy

ARTICLE INFO

Article history: Received 23 November 2013 Accepted 18 January 2014 Available online 13 February 2014

Kevwords: Desiccant cooling Microcogenerator Air handling unit Energy Thermo-economic analysis Dynamic simulation

ABSTRACT

In this work, a system consisting of a small scale trigeneration system, in which a heat-led microcogenerator interacts with a desiccant-based cooling system, equipped with a silica-gel desiccant wheel, is analyzed. The system provides the air-conditioning service to a lecture room during summer and winter periods and, over the whole year, thermal energy for domestic hot water production to a nearby multi-

Electricity from the cogenerator is used to drive the electric chiller, the auxiliaries as well as further electric appliances of the lecture room.

This trigeneration system is compared with a reference system, equipped with a conventional air handling unit, based on cooling dehumidification for summer air conditioning. Electricity to power the electric chiller, the auxiliaries, as well as electric appliances is drawn from the grid. Thermal energy for winter space heating, air post-heating during summer and domestic hot water purposes is provided by a natural gas boiler.

Experimental tests, as well as data derived from manufacturers, are used to implement a model of both systems. Simulations were then performed by means of TRNSYS software to compare their thermoeconomic performance.

A sensitivity analysis has been performed, to analyse the effect of the share of cogenerated electricity consumed on-site. The analysis shows encouraging results, given the Italian energy context for the small scale trigeneration system, in terms of primary energy consumption and equivalent carbon dioxide emissions reductions, with maximum values of 7.70% and 15.3%, respectively; on the other hand, it is difficult to achieve a reasonably short pay-back period for the system, even if it accesses all the support mechanisms introduced by Italian legislation for small scale gas fuelled trigeneration systems and a very high amount of cogenerated electricity is used on-site.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

During last years, air conditioning demand has spread, both in the commercial and the residential sector. This caused a sensible increase in primary energy consumption, especially in industrialized countries, where people spend the major part of the day in confined environments, requiring high indoor air quality and suitable thermal comfort [1].

The operation of a heating, ventilation and air-conditioning (HVAC) system is usually performed to achieve comfortable indoor conditions. But HVAC systems consume large amounts of energy. Therefore, it is very important to investigate the possibility of efficiently achieving, for the specific application and building type,

the desired indoor environmental conditions, reducing energy consumption and greenhouse gas (GHG) emissions.

The demand for summer cooling in domestic and commercial sectors is usually satisfied by electrically driven units; this involves high electric peak loads and black-outs. This trend is determining increasing interest in small scale trigeneration systems fuelled by natural gas (gas cooling systems), able to shift energy demand in summer from electricity to gas, and allowing the exploitation of the natural gas surplus during the warm season.

A suitable technology for gas cooling is represented by desiccant-based dehumidification systems, eventually integrated with conventional vapour compression cooling systems. In the most common configuration, they use a desiccant wheel (DW), in which moist air is dehumidified by the adsorbent material, to balance latent loads of the indoor ambient. To guarantee continuous operation, the wheel has to be regenerated by a hot air stream.

^{*} Corresponding author. Tel.: +39 0824 305576; fax: +39 0824 325246. E-mail address: giovanni.angrisani@unisannio.it (G. Angrisani).

Nomenclature specific heat capacity, kJ/(kg K) PS proposed system CHP_Bonus bonus related to energy savings of CHP, €/kW h_{Fl} RIC reciprocating internal combustion COP **RMSF** coefficient of performance, root mean standard error EC RS reference system extra cost € thermal energy storage EER energy efficiency ratio, -**TES FESR** WC white certificates fuel energy saving ratio, - F_k vearly cash flow, ϵ/v conversion factor from MW h to tep, tep/MW h f_T Greek symbols FIT feed-in tariff, €/kW h_{Fl} $\Delta CO_{2,eq}$ avoided equivalent CO_2 emissions, – solar gain, g allocation factor, h number of operating hours, efficiency or effectiveness, η K correction factor for white certificates calculation, specific emission factor, kg_{CO₂}/kW h μ LHV lower heating value, kW h/N m³ ψ surplus factor. m mass, kg mass flow rate, kg/s m Subscripts MC maintenance cost, ϵ/h or ϵ/y Cool cooling number of years, n $CO_{2,eq}$ equivalent carbon dioxide NE net energy, MW h DHW domestic hot water NS net saving, toe Fl electric ΩC operating costs, €/v F_1 , F_2 F_1 and F_2 potentials OE output energy, MW h Fuel fuel primary energy power, kW mains m PΕ primary energy, MW h NG natural gas PER primary energy ratio, -PΕ primary energy PES primary energy saving, -PS proposed system PLR partial load ratio, ref reference value SPB simple payback period, y RS reference system temperature, °C supply H overall heat transfer coefficient, W/m² K Th thermal UP unitary price, €/kW h or €/N m³ ΧE exported energy, MW h Superscripts related to effective primary energy consumption of Acronyms **MCHP** AHU air handling unit aux auxiliaries **CHP** combined heat and power chil chiller DCS desiccant cooling system DCS desiccant cooling system DHW domestic hot water DHW domestic hot water DW desiccant wheel GB gas boiler **GHG** greenhouse gas Grid electric grid **HVAC** heating ventilation and air conditioning HC heating coil **IHE** internal heat exchanger **MCHP** micro combined heat and power **MCHP** micro combined heat and power with subsidy **MCCHP** micro combined cooling heating and power TES thermal energy storage MFH multifamily house

During last years, thanks to its benefits [1], this technology is also spreading in residential and tertiary sectors and office buildings; however, in Europe this technology is still rarely implemented, neither in countries with significant cooling requirements of building, such as Italy, due to several obstacles, such as high investment costs and lack of knowledge about performances and cost/benefit ratio.

As regards thermal energy requirements to regenerate the desiccant material, it is possible to use a "free" thermal energy source, such as solar energy or waste heat recovered from a microcogenerator, eventually integrated with a conventional fossil-fuelled heating system (e.g. a boiler).

The performance of solar assisted heating and desiccant cooling systems for a domestic residence located in Baghdad was evaluated in [2]. Simulation of the open cycle solar assisted desiccant cooling system (DCS) showed that ambient and regeneration temperature, heat exchanger and evaporative cooler effectiveness have major influences on the system performance, whereas the dehumidifier has a minor effect.

A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate in [3]. The hybrid system utilizes solar energy for driving an absorption chiller and regenerating a desiccant wheel. The potential application of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The annual primary energy consumption of the solar hybrid cooling system was lower than that of the conventional vapour compression refrigeration system up to 36.5%.

A solar desiccant cooling and heating system was modelled in Simulink in [4]. Year-round performance about the system was simulated. Design parameters of solar air collectors were optimized that include collector area, air leakage and thermal insulation. During the simulation, 51.7% of the humidity load was totally handled by the two-stage desiccant cooling unit. For seasonal total heating load, about 49.0% was handled by solar energy.

When thermal energy from a microcogenerator is used to activate thermally-driven cooling equipment (as a DCS), the system is a microtrigeneration unit (MCCHP – micro combined cooling, heat-

Download English Version:

https://daneshyari.com/en/article/7165191

Download Persian Version:

https://daneshyari.com/article/7165191

<u>Daneshyari.com</u>