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a b s t r a c t

We model energy consumption of network electricity and compute Carbon emissions (CE) based on
obtained energy data. We review various models of electricity consumption and propose an adaptive sea-
sonal model based on the Hyperbolic tangent function (HTF). We incorporate HTF to define seasonal and
daily trends of electricity demand. We then build a stochastic model that combines the trends and white
noise component and the resulting simulations are estimated using Ensemble Kalman Filter (EnKF),
which provides ensemble simulations of groups of electricity consumers; similarly, we estimate carbon
emissions from electricity generators. Three case studies of electricity generation and consumption are
modelled: Brunel University photovoltaic generation data, Elexon national electricity generation data
(various fuel types) and Irish smart grid data, with ensemble estimations by EnKF and computation of
carbon emissions. We show the flexibility of HTF-based functions for modelling realistic cycles of energy
consumption, the efficiency of EnKF in ensemble estimation of energy consumption and generation, and
report the obtained estimates of the carbon emissions in the considered case studies.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Following the European Union legislations on CE (the so-called
‘‘20-20-20 target’’, which requires, in particular, 20% reduction of
CE by 2020 [1]), the United Kingdom has committed to reducing
CE by at least 15% across national industries. CE are reported in
grams equivalent of carbon dioxide (gCO2eq) and can be measured
directly, using on-site tools, or indirectly, using carbon factors de-
rived by Life Cycle Assessment techniques [2].

The reduction of CE in energy generation at power plants and in
households has gained much attention in order to meet the na-
tional need for sustainability. The UK Government has targeted
several low carbon energy plans: to ensure the transition together
with the Europen Union (EU) as a low carbon economy, and devel-
opment of the new Carbon Capture and Storage technology (CCS)
and in power plants before the year 2030 with investment worth
£110 billion in generation, transmission and distribution of electri-
cal power [3]. The large amount of investment by the UK govern-
ment indicates that there is a serious concern about the carbon
footprint of the energy industry throughout the generation and
distribution of electrical power. A good balance between

traditional and renewable electricity is important in keeping the
financial costs down and for environmental benefits. Studying
dynamical changes of electricity consumption is therefore impor-
tant in reducing of the total CE. It is therefore necessary to study
both profiles of electricity usage based on different types of con-
sumers and electricity generation patterns for the purpose of
reducing CE and energy losses.

1.1. Modelling background overview

Numerous models have been proposed for the description of
electricity data. Shang [4] used the univariate time series forecast-
ing method and regression techniques in predicting very short-
term (in minutes) electricity demands. This method avoided
seasonality considerations (daily, weekly and yearly). Dordonnat
et al. [5] presented a model for hourly electricity forecasting based
on stochastically time-varying processes with various parametric
trends (including seasons, short-term dynamics, weather regres-
sion effects and non-linear function for heating effects) using
Fourier series for the daily cycle base function.

However, Dordonnat et al. [5] reported that multiple unknown
parameters were introduced if the variance matrices in the regres-
sion model became very large and consequently various assump-
tions and restrictions were required. Brossat [6] stressed the
sophistication, efficiency and high specifications of Fourier series,
except for the difficulties in fitting many parameters into the
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model. According to McLoughlin et al. [7], the use of Fourier series
in the electrical load is applicable when electricity demand is sta-
ble, but the performance is relatively poor in response to sudden
changes in demands.

Autoregressive Integrated Moving Average (ARIMA) models
have been extensively used in forecasting due to the need for fewer
assumptions to be made. Jia et al. [8] reported that ARIMA is more
flexible in application and more accurate in prediction compared
with the Autoregressive (AR), Moving Average (MA), and Autore-
gressive Moving Average (ARMA) models. ARIMA models are often
associated with seasonality for better prediction of future de-
mands. The stochastic modelling of monthly inflows into a reser-
voir system using an ARIMA model based on 25 years of data by
Mohan and Vedula [9] showed that ARIMA models were applicable
in long-term forecasting. Based on quantitative analysis using an
ARIMA model, Jia et al. [8] concluded that they were effective in
simulation and prediction of ecological footprints. A comparison
of ARIMA forecasting and heuristic modelling by Wang et al. [10]
showed that ARIMA models are more accurate than heuristic mod-
els. However, the benefits of ARIMA models are contested by the
findings of Sumer et al. [11], who employed ARIMA, Seasonal Auto-
regressive Integrated Moving Average (SARIMA) and regression
models with seasonal latent variables in forecasting electricity de-
mand and the results indicated both ARIMA and SARIMA models
were unsuccessful in forecasting these data. Mečiarová [12] also
challenged the possible difficulties in the interpretation of results
based on ARIMA models. In forecasting aggregated diffusion mod-
els, ARIMA models tended to provide inaccurate results for long-
term predictions [13].

Meanwhile, a large number of Artificial Neural Networks
(ANNs) have been proposed to handle seasonal variations, but with
several potential drawbacks. The simulation study in Zhang and Qi
[14] has demonstrated that ANNs are unable to model seasonal
trends accurately unless the raw data is pre-processed (deseason-
alising and detrending) along with an adequate neural forecaster.

Hippert et al. [15] highlighted the two main features of ANNs:
(a) forecast ANNs might be over-parameterized with a large num-
ber of components (neurons) resulting in (at least) hundreds of
parameters to be estimated in a small data set; and (b) the results
generated using ANNs were not always adequate and realistic. In
electric power systems, ANNs can be classified as a ‘black box ap-
proach’, where the coefficients of variables do not represent tem-
poral and magnitude components of the electrical load profile
[7,16]. Other ANNs issues raised by Maier and Dandy [17] were:
(i) possible lack of appropriate model inputs; (ii) availability of
data and pre-processing data in the backpropagation algorithms;
and (iii) inadequate process of choosing the stopping criteria and
optimising the system. These factors could affect accuracies of sea-
sonal trends. On the other hand, several recent studies, particularly
in the energy field, showed the use of ANNs to provide accurate re-
sults. The statistical test completed by Schellong [18] showed that
using the backpropagation technique with ‘‘momentum term’’ and
‘‘flat spot elimination’’ as a learning rule, together with measured
consumption in the previous week, forecast results would be more

accurate. A comparative study by Jebaraj et al. [19] demonstrated
tha ANNs provided better results in forecasting coal consumptions.
The recent approach with the combination of ANNs and regression
model based Analysis of Variance (ANOVA) showed accurate fore-
cast of annual electricity consumption [20].

Still, there is a need for a model that would be able to reproduce
realistic behaviour of electricity data, as well as being computa-
tionally light, requiring a reasonably small number of parameters
and providing adequate flexibility in fitting diverse types of data
profiles. To this end, the HTF can be applied in fitting the model
of seasonal trends. It is one of the most common sigmoid transfer
functions in forecasting trajectories of dynamical systems in many
fields. Earlier, HTF was applied in forecasting energy related de-
mands in ANNs [21–24]. The HTF in multi-layer perceptron did
not work well in the calibration model based on gasoline Near
Infrared Spectroscopy (NIR) performed by Balabin et al. [25]. Schel-
long [18] also recommended the use of HTF along with logistics
and limited sine function in training neurons in ANNs for adequate
forecasting of the heat and power demand in Germany.

In order to build an electricity data model, a valid seasonal
trend of the power consumption is needed for further state-esti-
mations of CE. In this paper, HTF is chosen as the base in stochastic
modelling of seasonal trends in power consumptions due to its
need for fewer parameters and high flexibility in fitting the distri-
bution curves. Since we are interested in building a basic stochastic
model for various consumption profiles, HTF is implemented with-
out the application of ANNs. Methods in modelling the seasonal
trends using HTF will be explained in detail in the following
sections.

1.2. Electric system structure

In Fig. 1, we show a schematic representation of the electricity
network that includes generation, transmission, distribution and
consumption of electricity. Generation and consumption of elec-
tricity require different approaches in modelling and different car-
bon factors for estimation of CE.

In the electrical industry, it is crucial to model electricity con-
sumption in order to be able to organise energy generation, be-
cause electricity has very low storage capacity due to the current
technologies. Once the electricity consumption is known, CE can
be calculated with the up-to-date carbon footprints provided, for
the UK energy industry, in the two post notes of the Parliamentary
of Science and Technology [26,27] and Carbon Trust [28].

Calculation of the national carbon footprints in the UK is per-
formed by the company Ricardo-AEA [29], with quality assurance
performed by DEFRA and DECC and published by DEFRA in annual
reports. The latest data are available in the form of Microsoft Excel
spreadsheets on the website [30], where statistics are currently
stored for the years 2002–2013 inclusive. The carbon factors for
the year 2013 are valid until 31/05/2014, after which date they will
be revised.

The electricity network is changeable, with consumers and gen-
erators connecting and disconnecting from the grid depending on

Nomenclature

ANNs Artificial Neural Networks
ANOVA Analysis of Variance
AR Autoregressive
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
CE Carbon emissions
EnKF Ensemble Kalman Filter

HTF Hyperbolic tangent function
MA Moving Average
NIR Near Infrared Spectroscopy
PV Photovoltaic
SARIMA Seasonal Autoregressive Integrated Moving Average
SME Small-medium Enterprise
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