
Multi-agent modeling for the simulation of a simple smart
microgrid

Enrique Kremers a,⇑, Jose Gonzalez de Durana b, Oscar Barambones b

a European Institute for Energy Research, Emmy-Noether-Strasse 11, 76131 Karlsruhe, Germany
b EUI, Basque Country University, Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain

a r t i c l e i n f o

Article history:
Received 29 April 2013
Accepted 16 July 2013

Keywords:
Power grid
Smart grid
Renewable energy systems
Energy saving
Smart meter
Microgrid modelling
Complex systems
Agent-based modelling
Demand side management
Smart grid simulation
Load flow
Load shedding

a b s t r a c t

The smart grid is a highly complex system that is being formed from the traditional power grid, adding
new and sophisticated communication and control devices. This will enable integrating new elements for
distributed power generation and also achieving an increasingly automated operation so for actions of
the utilities as for customers. In order to model such systems, a bottom-up method is followed, using only
a few basic elements which are structured into two layers: a physical layer for the electrical power trans-
mission and one logical layer for element communication. A simple case study is presented to analyze the
possibilities of simulation. It shows a microgrid model with dynamic load management and an integrated
approach that can process both electrical and communication flows.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the last years, energy systems are moving away from a cen-
tralized and hierarchical structure, under strict control of the elec-
tricity supply companies, toward a new system where distributed
actors influence the energy supply. Production is no longer limited
to large energy providers, as small decentralized producers in the
form of distributed generation (DG) enter the network and are able
to inject energy at much lower voltage levels than before.

This paradigm shift involves new challenges for the modeling
and simulation of energy systems for which decentralized models
are needed. Among the presented in a review in [1], there are, for
example, several commercial tools used in power engineering,
such as Eurostag or PSS/E. Further, a number of non-proprietary
tools exist, such as several toolboxes based on Matlab/Simulink,
for example Matpower or PSAT.

Since some years, the term smart grid has become widespread in
the energy sector. The introduction of smart grids involves a
change from manual operations toward an intelligent, ICT based

and controlled network. These changes will especially affect the
distribution grid [2], and in this way, microgrids.

A number of models have been developed to analyze and
understand the behavior of microgrids. Some of them focused on
decentralized control strategies, usually using Matlab/Simulink
and similar classic tools, are of special interest [3–5]. Particularly
relevant is the work on demand side management, using virtual
powers plants [6] and on multi-agent platforms [7]. And also worth
mentioned as significant the recently extended idea, discussed in
some conferences [8] and accepted very well in some countries,
of using microgrids as building blocks of the future smart grid [9].

Here, we recall that traditional methods used for analysis of
electrical networks are based on static power flow calculations
[10]. But these methods are not suitable for computing the system
response to special events (such as power changes in generators
fed by renewable energies, sudden connection and disconnection
of loads and sources, or even when the network structure changes
after a disaster occurs), because in these cases, the values of the
variables have to be updated in a short time, as they are used for
the network control or simulation, and therefore, a new ‘‘steady’’
state computation is required each time one of such special event
occurs, which is not efficient at all.

Trying to give a solution to this problem the authors designed a
decentralized power flow algorithm for this kind of models (see

0196-8904/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.enconman.2013.07.050

⇑ Corresponding author.
E-mail addresses: kremers@eifer.org (E. Kremers), josemaria.gonzalezde

durana@ehu.es (J. Gonzalez de Durana), oscar.barambones@ehu.es (O. Barambones).

Energy Conversion and Management 75 (2013) 643–650

Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier .com/ locate /enconman

http://crossmark.crossref.org/dialog/?doi=10.1016/j.enconman.2013.07.050&domain=pdf
http://dx.doi.org/10.1016/j.enconman.2013.07.050
mailto:kremers@eifer.org
mailto:josemaria.gonzalezdedurana@ehu.es
mailto:josemaria.gonzalezdedurana@ehu.es
mailto:oscar.barambones@ehu.es
http://dx.doi.org/10.1016/j.enconman.2013.07.050
http://www.sciencedirect.com/science/journal/01968904
http://www.elsevier.com/locate/enconman


below). This method provides a more flexible and dynamic way
than traditional methods and is able to cope with sudden changes
and disasters. The method is described in [11] and was successfully
validated against the Matlab PSAT Toolbox [12].

1.1. Modeling the smart grid

In [11], the complexity for modeling smart grids was identified.
A first smart grid model was developed, which represents the sys-
tem on the physical layer, by integrating a distributed load flow
algorithm. The model was tested by running different simulations,
letting interact a wind generation unit, a photovoltaic panel, a bat-
tery, two loads and a diesel generator. By modeling the individual
elements as agents, a modular and flexible approach was used,
where the agents can be programmed to have different behaviors
such as the charging and discharging times for the battery system,
or the integration of variable wind speeds by adding a wind speed
simulator module which directly interacts with the turbines. On
the logical layer, a first approach was made.

This approach is extended in the current work by adding real-
time communications to the simulation, which represent one of
the main features of the logical layer. Because of their scarce re-
sources, microgrids need a flexible demand side [13], so introduc-
ing communication is essential as it allows performing monitoring,
control [14] and demand side management, among others.

As some specific aspects of the author’s work in this area were
presented in some conferences [11,15,16,11,17], in a rather infor-
mal manner, here we intend to offer a more understandable and
reproducible description of them, by using some elements from
the ODD protocol [18].

2. Overview

An agent-based approach was chosen for modeling a simple
microgrid, trying to represent a minimalistic smart grid (or
smart-microgrid). The implementation was done in the multi-para-
digm modeling environment AnyLogic.

2.1. Purpose

The main aim is to demonstrate the feasibility and convenience
of the agent-based methods in that small instance, and further be
able to use it as a building block [8] in other more complex power
networks, and even to grow it to other more capable multiple lay-
ered structures, able to deal with multicarrier energy networks.

The model is intended to be very flexible and, although its ac-
tual size was chosen to be very small, in order to simplify explana-
tions and demonstrations, it may be easily adapted to any other
given microgrid structure.

This shall allow for practically any virtual experiment for con-
trol and management schemes, some of which, still under develop-
ment, are required for a sustainable operation of microgrids within
the energy system [14].

A very first and simplified model of a load management is pro-
posed, using communicating smart meters. The model focuses on
the system view, which rather than representing the load manage-
ment mechanism in detail, aims to represent the microgrid as a
whole in order to observe the effects at that level. The model shows
the importance of a logical layer in the smart grid.

2.2. Structure – state variables and scales

The model structure is inspired on power flow analysis [10]. In
this context, an electrical network is represented by a weighted
graph G = (V,E) where V is a set of n vertices and E 2 {V � V} is
the set of edges in the network.

Fig. 1 shows a graph with six vertices, representing the simple
electric network of the model. Vertices are also called buses by elec-
trical engineers and represent electrical power generators and
loads, and edges, also called lines, represent electrical power trans-
mission lines. Physically, an electrical network represents a circuit
where the electricity is flowing from each node to some other.

The approach the authors proposed in [11] is to split the net-
work node in two parts, in order to obtain a two layer structure,
composed of a logical layer and a physical layer. An agent is as-
signed to each node – so there are also n agents – who acting at
the two layers are able to perform their respective tasks: power
flow calculations at the physical layer, communications tasks at
the logical layer, and also the implied inter-layer actions.

The very simple example showed in Fig. 2, with six agents, has
been chosen for instantiate the model. Note the number of vertices
is the same, n = 6, for both layers, but the edges are different: while
at the logical layer, edges represent communication channels, so at
the physical layer, they represent electric lines.

These figures also show the vertex numbers and their type in
the physical layer: Slack, Control and Load, also named, respec-
tively, Reference, PV and PQ buses, referring to the known real data
pair at the two last.

2.3. Process overview and scheduling

At the lowest level, like a daemon, the AnyLogic simulation en-
gine is conducting the most basic rhythms for the launched model,
using a well defined, scheduled pattern of time and event steps.
During each time step, the model clock is advanced, the discrete
state of the model remains unchanged, active equations, if any,
are being solved numerically, the variables are changed corre-
spondingly, and also, awaited change events are tested for occur-
rence. During each event step, no model time elapses, the actions
of states, transitions, events, ports, etc. corresponding to this event
are executed, the discrete state of the model may change, some
scheduled events may be deleted, and the new events may be
scheduled in the AnyLogic Engine event queue.

At any simulation time, the user can view the event queue of
the AnyLogic simulation engine to view what is happening there
and even to make some changes to the event processing (see The
Big Book of AnyLogic [19]). This amazing process is one of the main
virtues of the program since it frees the user from the complicated
task of treating events, greatly facilitating the implementation of
discrete event models.

At the highest level, the Main Class allows the user for instanti-
ate all the other classes corresponding to sub-models, agents crea-
tion and replication, main variables definition, model initialization,
and also to create the user interface and some complementary
variables. This class is associated with the so-called Main Window,
through which the user define the main parameters and variables
and instantiate the classes. A specially important instance here is
the Environment one (whose class can be found in the AnyLogic
libraries), where the agents ‘‘live’’, because it is usually used to de-
fine the basic rules for agent behavior.

Fig. 1. Graph of the model electrical network.

644 E. Kremers et al. / Energy Conversion and Management 75 (2013) 643–650



Download English Version:

https://daneshyari.com/en/article/7166485

Download Persian Version:

https://daneshyari.com/article/7166485

Daneshyari.com

https://daneshyari.com/en/article/7166485
https://daneshyari.com/article/7166485
https://daneshyari.com

