Contents lists available at ScienceDirect

Engineering Failure Analysis

journal homepage: www.elsevier.com/locate/engfailanal

Modelling of acoustic emission generated due to pitting on spur gear

Ram Bihari Sharma, Anand Parey*

Mechanical Engineering Department, School of Engineering, Indian Institute of Technology Indore, India

ARTICLE INFO

Keywords: Acoustic emission Gear Defect Asperity and protrusion contact Modelling

ABSTRACT

Acoustic emission (AE) is a non-destructive technique which is used for condition monitoring and health diagnosis of rotating machine elements such as gearboxes. Several experimental investigations have been performed which shows the capability of AE technique to fault or defect detection on gears. It has been also investigated by experimental studies that if the size of defect increases, the AE level also increases. But to the best knowledge of authors, there is lack of mathematical model to understand the physics behind the same. This study presents a theoretical model to establish a relationship between size of fault/defect and energy of AE generated during gear meshing on the bases of interaction of asperity and protrusion around the defect using Hertzian contact approach, varying sliding velocity of gear tooth mechanism, and statistical concepts with the aid of surface topography of gear tooth having the pit of different size. The model is developed by considering the influence of three phenomena during gear mesh cycle: load sharing, lubrication and dynamic load condition. The developed theoretical model is validated with experimental study performed on IAE gear lubrication testing machine and satisfactory results have been observed.

1. Introduction

Acoustic emission (AE) is used for non-destructive testing (NDT) of health monitoring of rotating machines. AE provides the advantage of identify the faults/defects at early stages because it is initiated at microscopic level and it is highly sensitive to detect the loss of any mechanical integrity. Hence, AE is effective technique for the defect detection in the gearboxes in comparison to other techniques such as vibration measurements, wear debris analysis, ultrasonic testing and temperature measurements etc. Several experimental studies have been performed to assess the effectiveness of AE in identifying the defect in gearboxes. The results of these studies illustrate the capability of AE to diagnosis the fault and effective condition monitoring of gearboxes. AE is defined as the transient elastic wave that is spontaneously produced by the rapid release of strain energy caused by structural change within material under the stresses [1-4]. AE is non-directional technique and the frequency range of AE takes place between 100 kHz and 1 MHz. The main concern with this technique is the attenuation of the AE signal during its propagation across the interfaces.

It has been mentioned in the researches that the presence of fault on the gears strongly influence the AE during the meshing of gears [5–14]. In addition, it is also noted that size of defect contributes to the level of AE measured. Tandon and Mata [5] performed an experimental study to investigate the presence of defect in spur gears by AE in back-to-back gearbox test rig and measured three AE parameters viz. peak amplitude, energy and ring-down counts. The defects, simulated pits, were introduced on the pitch-line of gear tooth with varying diameters using spark erosion method. They observed that the monitored AE parameters increase with

* Corresponding author. *E-mail addresses:* phd1301203009@iiti.ac.in (R.B. Sharma), anandp@iiti.ac.in (A. Parey).

https://doi.org/10.1016/j.engfailanal.2017.12.016

Received 18 April 2017; Received in revised form 14 November 2017; Accepted 20 December 2017 Available online 21 December 2017

1350-6307/ © 2017 Elsevier Ltd. All rights reserved.

Nomenclature			the mean line
		Ac	total apparent contact area of one pair of teeth
а	radius of Hertzian contact area		during meshing of gears
d	separation between smooth surface of gear tooth	Ad	the portion of contact area of gear tooth surface
	and the reference plane in the rough surface of		which is having protrusions around the produced
	another gear tooth		defect as shown in Fig. 3
h	standardized separation	Ar	the contact area of gear tooth surface excluding
k _v	dynamic factor		the contact area A_d and the area of defect (pit) as
р _а	load shared by asperities for respective area		shown in Fig. 3
D;	load supported by the pair of teeth at particular	AB	path of contact
F1	local contact during mesh cycle	AE rms	root mean square value of acoustic emission
r.	radius of tooth surface of gear at the point of	AP	nath of approach
IDEPSIC(contact (at respective defect diameter) corre-	R	face width of gear tooth
	sponding to the defect with protrusion and point of	C	part of the total elastic strain energy which alters
	sponding to the delect with protrusion end point of	Ce	into acoustic emission pulses
	single tooth contact for the new tooth pair	C	nito acoustic emission pulses
I 1DSPSTC(1) radius of tooth surface of gear at the point of	C _m	the AE concerns (AE measurement instruments
	contact (at respective delect diameter) corre-	D	the AE sensors/AE measurement instruments
	sponding to the defect with protrusion start point	D	diameter of defect (pit) on the pitch line of gear
	of single tooth contact for the new tooth pair	_	tooth surface
r _{1HPDTC(1}) radius of tooth surface of gear at the point of	Ei	stored elastic energy in the contact of individual
	contact corresponding to the highest point of	_	asperity
	double tooth contact for the new tooth pair	\overline{E}_{ia}	stored mean elastic energy in the contact of in-
r _{1HPDTC(2}	p radius of tooth surface of gear at the point of		dividual asperity
	contact corresponding to the highest point of	EAE	total energy of acoustic emission converted into
	double tooth contact for the previous tooth pair		AE signal during the duration ΔT
r _{1HPDTC(3}	radius of tooth surface of gear at the point of	E _T	total elastic energy stored due to the asperity
	contact corresponding to the highest point of		contacts in N _r number of revolutions of gears
	double tooth contact for the next tooth pair	E	Hertzian contact modulus
r _{1HPDTC} /	(1) radius of tooth surface of gear at the point of	E' _{AE}	elastic energy rate of acoustic emission produced
	contact corresponding to the highest point of		by total asperity contacts
	double tooth contact for the new tooth pair during	E'AF	elastic energy rate of acoustic emission produced
	the HPSTC to TD	/ LL _T	by total asperity contacts in contact area A.
LINDSTC(1)	radius of tooth surface of gear at the point of	E'AE	elastic energy rate of acoustic emission produced
-1111310(1	contact corresponding to the highest point of	- AL _d	by total protrusion contacts in contact area A ₄
	single tooth contact for the new tooth pair	E'r	elastic strain energy rate released by asperity
LI DETC(1)	radius of tooth surface of gear at the point of	- 1	contacts
-1LPSIC(1)	contact corresponding to the lowest point of single	DEPSTC	defect with protrusion end point of single tooth
	tooth contact for the new tooth pair	DEIDIG	contact at respective defect diameter
r	radius of tooth surface of gear at the point of	DEDETC	defect with protrusion start point of single tooth
11TD(1)	contact corresponding to the tooth disongagement	Doroit	contact at respective defect diameter
	for the new tooth pair	UDDTC	highest point of double tooth contact
	for the new toolin pair	INDIC	highest point of double tooth contact
$\Gamma_{1TD(2)}$	radius of tooth surface of gear at the point of	HPDIC	LIDGTC to TD
	contact corresponding to the tooth disengagement	LIDOTO	HPSIC to ID
	for the previous tooth pair	HPSTC	highest point of single tooth contact
$r_{1TE(1)}$	radius of tooth surface of gear at the point of	LPSTC	lowest point of single tooth contact
	contact corresponding to the tooth engagement for	LSF	load sharing factor during meshing of gears
	the new tooth pair	LSF _{DEPST}	C(1) load sharing factor corresponding to defect
r _{1TE(3)}	radius of tooth surface of gear at the point of		with protrusion end point (at respective defect
	contact corresponding to the tooth engagement for		diameter) of single tooth contact for the new tooth
	the next tooth pair		pair
r	reduced radius of the curvature during Hertzian	LSF _{DSPST}	_{C(1)} load sharing factor corresponding to defect
	contact area		with protrusion start point (at respective defect
t	mean release time of the elastic energy due to as-		diameter) of single tooth contact for the new tooth
	perity deformation		pair
v	sliding velocity along the line of contact of the	LSF _{HPDTC}	C(1) load sharing factor corresponding to highest
	gear		point of double tooth contact for the new tooth
х	number of teeth in gears		pair
z(x)	height of the rough surface profile i.e. asperities at	LSFHPDTO	$C_{(2)}$ load sharing factor corresponding to highest
	a distance x from the mean line		point of double tooth contact for the previous

- \boldsymbol{z}_d height of the protrusions around the defect from
- 2

tooth pair

Download English Version:

https://daneshyari.com/en/article/7167542

Download Persian Version:

https://daneshyari.com/article/7167542

Daneshyari.com