### Accepted Manuscript

Damage associated with the interaction between hydrogen and microstructure in a high sulfur 17-4PH steel for studs

S.S.M. Tavares, C.L.C. Machado, I.G. Oliveira, T.R.B. Martins, M. Masoumi

PII: S1350-6307(16)30908-6

DOI: doi: 10.1016/j.engfailanal.2017.05.004

Reference: EFA 3122

To appear in: Engineering Failure Analysis

Received date: 5 October 2016 Revised date: 23 January 2017 Accepted date: 1 May 2017



Please cite this article as: S.S.M. Tavares, C.L.C. Machado, I.G. Oliveira, T.R.B. Martins, M. Masoumi, Damage associated with the interaction between hydrogen and microstructure in a high sulfur 17-4PH steel for studs, *Engineering Failure Analysis* (2017), doi: 10.1016/j.engfailanal.2017.05.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## **ACCEPTED MANUSCRIPT**

Damage associated with the interaction between hydrogen and microstructure in a high sulfur 17-4PH steel for studs

<sup>a,b,\*</sup>S. S.M. Tavares, <sup>a</sup>C.L.C. Machado, <sup>a</sup>I.G. Oliveira, <sup>a</sup>T.R.B. Martins, <sup>c</sup>M. Masoumi

<sup>a</sup>Universidade Federal Fluminense – Departamento de Engenharia Mecânica,
Niterói/RJ, Brazil; <sup>b</sup>Centro Federal de Educação Celso Suckow, Pós Graduação em
Ciências dos Materiais, Rio de Janeiro/Brasil; <sup>c</sup>Universidade Federal do Ceará –
Departamento de Engenharia Metalúrgica, Fortaleza/Brazil.

#### **Abstract**

A great number of failure cases of precipitation hardenable 17-4 PH steels have been described in the literature. Structural components working in harsh environments failed due excessive hardness. A maximum hardness of 33 HRC was specified for service in aggressive media. However, high impurity levels and chromium carbide precipitation may cause failure, even when the correct final heat treatment is applied and the hardness is below the maximum limit. This fact is investigated in this work, where a 17-4PH steel with 0.027%S was evaluated after hydrogen cathodic charging. Specimens with three different commercial heat treatments were evaluated. Specimens with treatments A (solution treated) and H900 (aged for the peak of hardness) showed inter and transgranular microcracks, pores and cracks associated with sulfide inclusions. Specimen with treatment H1150 (overaged), with low hardness, experienced intergranular attack and pores nucleation in the inclusions. The high sulfur steel was also more susceptible to pitting corrosion, which can also contribute to the hydrogen embrittlement process in high chloride solutions. It is recommended to limit the sulfur and other impurities contents to values lower than those specified by the usual standards.

**Key-words:** Precipitation hardenable stainless steel, hydrogen embrittlement, sulfides.

\*Corresponding author: ssmtavares@terra.com.br

+55 21 988992302

#### Download English Version:

# https://daneshyari.com/en/article/7167918

Download Persian Version:

https://daneshyari.com/article/7167918

Daneshyari.com