Accepted Manuscript

Elevated temperature inversion phenomenon in fracture properties of concrete and its application to maturity model

Zhengxiang Mi, Yu Hu, Qingbin Li, He Zhu

PII:	S0013-7944(17)31262-6
DOI:	https://doi.org/10.1016/j.engfracmech.2018.05.040
Reference:	EFM 6014
To appear in:	Engineering Fracture Mechanics
Received Date:	27 November 2017
Revised Date:	23 May 2018
Accepted Date:	25 May 2018

Please cite this article as: Mi, Z., Hu, Y., Li, Q., Zhu, H., Elevated temperature inversion phenomenon in fracture properties of concrete and its application to maturity model, *Engineering Fracture Mechanics* (2018), doi: https://doi.org/10.1016/j.engfracmech.2018.05.040

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Elevated temperature inversion phenomenon in fracture properties of concrete and its application to maturity model

Zhengxiang Mi, Yu Hu, Qingbin Li^{*}, He Zhu,

State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

ARTICLE INFO	ABSTRACT
Article history:	The effect of elevated curing temperature on the fracture properties of concrete was
	investigated. Fracture experiments were carried out on wedge splitting specimens
Keywords:	exposed to temperatures ranging from 5 to 60 °C. A new maturity model was then
Fracture properties;	proposed for describing the combined influence of the temperature and aging on the
Temperature inversion	fracture properties of concrete. The results show that the fracture energy of concrete
phenomenon;	subjected to high temperature is high at early ages; however, the effect of curing
Optimum curing	temperature on the fracture energy was reversed after 14 days, with greater later-age
temperature;	fracture energy corresponding to lower temperature and vice-versa. The effective
Activation energy;	fracture toughness of concrete also exhibited the same temperature inversion
Maturity model;	phenomenon. The optimum curing temperature was found to be approximately 40 $^{\circ}\mathrm{C}$
	for development of concrete fracture properties. The value of activation energy
	changed with fracture properties, temperature ranges and the development stage of a
	given fracture property. The proposed model accurately predicts the fracture
	properties of concrete and significantly simplifies the calculation process of the
	maturity index relative to the existing maturity method.

1. Introduction

Concrete structures are often subjected to elevated temperatures owing to hot weather, hydration heat accumulation, high temperature curing, or a combination of these factors. For instance, the maximum temperature in the outer containment of the Taishan Nuclear Power Plant reaches 58 °C [1]. The hydration process of cement at a high temperature is markedly different from that at a normal temperature, thus significantly affecting the concrete performance [2]. The maturity method can be used to estimate the development of fracture behavior of concrete structures under these conditions.

The maturity concept was originally proposed by Saul [3] to describe the combined effect of temperature and aging on the compressive strength. The major drawback of the maturity formulation is the lack of physical meaning, and it is assumed that the temperature has a linear effect on the strength development. The linear approximation was found to be invalid when the curing temperature varies over a wide range [4]. Typically, this temperature function greatly underestimates the effect of temperature at low maturities and overestimates it at high maturities. To improve the disadvantages of Saul's formulation, several different nonlinear temperature functions have been proposed [5, 6], which were summarized in [7]. Among these functions, the most famous is the equivalent age formula derived from the Arrhenius equation [5]. This formula yields the most accurate prediction and provides insights into the physical meaning of maturity by modeling the rate of cement Download English Version:

https://daneshyari.com/en/article/7168668

Download Persian Version:

https://daneshyari.com/article/7168668

Daneshyari.com