ARTICLE IN PRESS

Engineering Fracture Mechanics xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

A cohesive element with degradation controlled shape of the traction separation curve for simulating stress corrosion and irradiation cracking

M. Sedlak^{a,*}, B. Alfredsson^a, P. Efsing^{a,b}

^a Department of Solid Mechanics, Royal Institute of Technology, KTH, 100 44 Stockholm, Sweden ^b Ringhals AB, SE-43285 Väröbacka, Sweden

ARTICLE INFO

Keywords: Traction separation law Intergranular stress corrosion cracking PPR potential-based User element Hydrogen embrittlement

ABSTRACT

A cohesive element with extended environmental degradation capability was developed and implemented into an Abaqus user element. The element uses a virgin and a fully degraded Traction Separation Law (TLS) as input. The use of the potential based PPR model enables flexibility in the softening shapes for both TSL. When the element is degraded, the TSL gradually goes from the shape of the virgin material to the fully degraded TSL shape. This transition was made with a new parameter χ that can govern a more ductile or brittle crack growth behaviour at degradation. The effect on the plastic zone due to changing the softening shape is shown, where the convex shaped softening TSL gives higher plastic dissipation and larger plastic zones than the concave and more brittle TSL. The new degradation method was evaluated against a Hydrogen Embrittlement (HE) experiment showing improved agreement with the experiment compared to the literature. The effect of different susceptibility zones at the crack tip was also investigated, showing that a uniform degradation throughout the susceptible zone is more influenced by the χ parameter than a triangular susceptible zone.

1. Introduction

In many engineering fields it is increasingly important to understand the susceptibility to fracture in materials with ageing processes. In nuclear power plants, Intergranular Stress Corrosion Cracking (IGSCC), Irradiation Assisted Stress Corrosion Cracking (IASCC) and Hydrogen Embrittlement (HE) play important roles in plants service time [1]. In IGSCC an oxide is formed at the crack tip and may extend along the grain boundaries which degrade the mechanical properties. The process is known as film-rupture [2]. Other kind of degradations are when the process solely depends on film rupture [3] or when the film rupture frequency, i.e. crack growth, depends on strain [4,5]. Later similar models with the same concept were typically denoted "slip oxidation mechanism" [6], "film rupture slip dissolution" [7] and "slip dissolution-repassivation" [8]. A common denominator of the existing film-rupture models is a limited definition of the underlying strains. IGSCC in nuclear power plants is not only limited to oxide growth mechanisms, it can also be a result of HE [9]. In a similar ageing process, IASCC, the material is embrittled by irradiation changing the mechanical properties, especially at the grain boundaries [10]. This process is a more uniform degradation process through the grain boundary than IGSCC or HE which are more concentrated to the tip of the crack where the adsorption takes place.

The intergranular degradation process was here only considered at the grain boundaries making it convenient to use cohesive elements at the grain boundaries. The cohesive framework was introduced by Barenblatt [11] and Dugdale [12] and later brought

* Corresponding author.

https://doi.org/10.1016/j.engfracmech.2018.02.011

Received 7 July 2017; Received in revised form 20 January 2018; Accepted 4 February 2018 0013-7944/ @ 2018 Elsevier Ltd. All rights reserved.

E-mail address: msedlak@kth.se (M. Sedlak).

ARTICLE IN PRESS

M. Sedlak et al.

Engineering Fracture Mechanics xxx (xxxx) xxx-xxx

Nomenclature		$\delta_n^{ini},\!\delta_n^{full}$	normal separations
		δ_1^{ini} , δ_1^{full}	tangential separations
a_0	initial crack length	δ_{nc}^{ini} , δ_{nc}^{full}	normal critical separations
b	body force vector	$\delta_{1c}^{ini}, \delta_{1c}^{full}$	tangential critical separation
$b_0, b_1,$	coefficients of polynomial	$\delta^{e\!f\!f}$	effective separation
В	thickness of specimen	$\delta_{c}^{e\!f\!f}$	critical effective separation
С	normalized hydrogen concentration	би	variation of displacement
D_{eff}	effective diffusion	δE	virtual Green-Lagrange strain
E	Young's modulus	$\delta \Delta$	virtual separation
E_m^i	Fourier coefficients	Δ_{eff}	current effective separation
Η	hardening modulus	Δ_{\max}	largest effective separation
J	J-value	Δa	crack extension
L	length of specimen	ΔT_n	traction change
L_1	length of diffusion process zone	$\Delta u_n, \Delta u_1$	current normal and tangential mid-plane separa-
S	crack path coordinate		tion
S	second Piola-Kirchhoff stress	$\Delta u_n^*, \Delta u_1^*$	current scaled normal and tangential mid-plane
t, t_1	time		separation
T_n, T_1	normal and tangential traction	η_{deg}	degradation parameter
$T_{*,n}$	lowest maximum normal traction	η_T	damage parameter
T_n^{ini}, T_1^{ini}	initial TSL parameter	η_T^{old}	damage parameter from previous step
T_n^{full}, T_1^{full}	fully degraded TSL parameter	$\lambda_n^{ini}, \lambda_n^{full}, \lambda_n^{$	$R_{\chi,n}$ normal initial slope indicators
T_n^{unl}, T_1^{unl}	normal and tangential traction at unloading	$\lambda_1^{ini}, \lambda_1^{full}, \lambda_1^{$	$\lambda_{r,n}$ tangential initial slope indicators
T_{cz}	cohesive traction	μ	cohesive strength reduction factor
T_{ext}	external traction	ν	Poisson's ratio
T^{eff}	effective cohesive traction	Π_a, Π_{int}, Π	ext virtual work
$T^{eff,ini}$	initial maximum effective cohesive traction	ρ,ρ_c	density, density in current configuration
T_{max}^{eff}	maximum effective cohesive traction	σ	Cauchy stress
$T_{max,n}, T_{max}$	$x_{n,n}$ maximum cohesive traction, normal and tan-	$\sigma_{ m Y}$	yield stress
.00	gential	χ	degradation parameter
$T_{\chi}^{e_{ff}}$	effective cohesive traction at critical separation	ϕ, ϕ_n, ϕ_1	fracture energy, normal and tangential
$T_{\chi,n}, T_{\chi,1}$	cohesive traction at critical separation, normal and	$\phi^{deg}, \phi^{deg}, \phi$	ϕ_1^{deg} degraded fracture energy, normal and tan-
	tangential		gential
и,ü 	displacement, acceleration	$\phi^{full}, \phi_n^{full}, \phi_n^{f$	ϕ_1^{full} fracture energy at full degradation, normal
W	width of specimen		and tangential
x, y	Cartesian coordinates	$\phi^{ini},\phi^{ini}_n,\phi$	ini initial fracture energy, normal and tangential
μ_{μ} , μ_{χ} normal softening parameter			
p,p,	tangential soltening parameter		

into a computational concept by Hillerborg [13]. The cohesive description is a method to mimic the complex physical behaviour of crack growth. The cohesive element is an interface description in which the element is described with two linear faces, and the cohesive properties are governed by the separation between these two linear faces. The separation is then translated into traction by differentiation of the potential of the cohesive law, this traction separation curve is called the Traction Separation Law (TSL). The area inside the TSL at every cohesive element is the Griffith's energy [14] and also the elastic part of the J-integral [15]. The formulation enables a zero thickness 2D-element, it introduces a length scale in the model and it removes the singularity present in Linear Elastic Fracture Mechanics (LEFM). There are however some inherent challenges with the cohesive elements, which must be kept in mind when using them: the lack of balance of angular momentum is one, thermodynamic consistency is another and material frame indifference is a third [16].

There are many different shapes of the traction-separation curves, the most popular are the polynomial [17], the trapezoidal [18], the linearly decreasing which is also called triangular [19], the exponential [20,21], bilinear [22–24] and the discrete cohesive model [25]. A comparison between different TSL shapes was performed by Alfano [26].

A degradation process due to environmental exposure can be implemented by altering the fracture energy and the ultimate strength in the TSL. The fracture energy in a cohesive element can be obtained from the area enclosed by the TSL. The ultimate strength is the maximum traction the cohesive interface can provide. The degradation processes is usually implemented by lowering the maximum cohesive strength while keeping the final separation fixed in a triangular shaped TSL [27,28] or other TSL shapes [29,30]. Neither of these methods can be varied to describe a material that changes the ductility throughout the degradation process. In cyclic cohesive zone models (CCZM) complex degradation phenomena has been developed, thought for fatigue crack growth. A review on this subject is found in Kuna and Roth [31].

The present work focused on creating a versatile tool for the mechanical modelling of the degradation processes of IGSCC and HE. To be able to model more complex environmental effects, a more general TSL than the ones described in the literature was desired, for instance to control the plastic zone at fixed cohesive strength and fracture energy or changing the ductility throughout the Download English Version:

https://daneshyari.com/en/article/7168924

Download Persian Version:

https://daneshyari.com/article/7168924

Daneshyari.com